[2] Walter Carlip, Lawrence Somer:
Bounds for frequencies of residues of regular second-order recurrences modulo $p^r$. Number Theory in Progress, Vol. 2 (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, pp. 691–719.
MR 1689539
[3] R. D. Carmichael:
On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$. Ann. Math. 15 (1913/14), 30–70.
MR 1502458
[5] William J. LeVeque:
Fundamentals of Number Theory. Dover Publications Inc., Mineola, NY, 1996, Reprint of the 1977 original.
MR 1382656
[6] E. Lucas:
Théorie des fonctions numériques simplement périodiques. Amer. J. Math. 1 (1878), 184–240, 289–321.
DOI 10.2307/2369373 |
MR 1505176
[7] L. M. Milne-Thompson:
The Calculus of Finite Differences. Macmillan, London, 1951.
MR 0043339
[8] H. Niederreiter:
A simple and general approach to the decimation of feedback shift-register sequences. Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform. 17 (1988), 327–331.
MR 0967952 |
Zbl 0678.10011
[9] H. Niederreiter, A. Schinzel, L. Somer:
Maximal frequencies of elements in second-order linear recurring sequences over a finite field. Elem. Math. 46 (1991), 139–143.
MR 1119645
[10] Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery:
An Introduction to the Theory of Numbers, fifth ed. John Wiley & Sons Inc., New York, 1991.
MR 1083765
[11] Lawrence Somer: Solution to problem H-377. Fibonacci Quart. 24 (1986), 284–285.
[12] Lawrence Somer:
Upper Bounds for Frequencies of Elements in Second-Order Recurrences Over a Finite Field. Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993, pp. 527–546.
MR 1271393
[15] William A. Webb, Calvin T. Long:
Distribution modulo $p^{h}$ of the general linear second order recurrence. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 92–100.
MR 0419375