Previous |  Up |  Next


neutral functional-differential-algebraic systems; consistency; convergence
A general class of numerical methods for solving initial value problems for neutral functional-differential-algebraic systems is considered. Necessary and sufficient conditions under which these methods are consistent with the problem are established. The order of consistency is discussed. A convergence theorem for a general class of methods is proved.
[1] K. E. Brenan, S. L. Campbell, L. R. Petzold: Numerical Solution of Initial-Value Problems in Differential-Algebraic-Equations. North-Holand, New York, Amsterdam, London, 1989. MR 1101809
[2] S. L. Campbell: Singular Systems of Differential Equations. Pitman, London, 1980. Zbl 0419.34007
[3] S. L. Campbell: Singular Systems of Differential Equations II. Pitman, London, 1982. Zbl 0482.34008
[4] J. P. Deuflhard: Recent progress in extrapolation methods for ordinary differential equations. SIAM Rev. 27 (1985), 505–535. DOI 10.1137/1027140 | MR 0812452 | Zbl 0602.65047
[5] P. Deuflhard, E. Hairer, J, Zugck: One-step and extrapolation methods for differential-algebraic systems. Numer. Math. 51 (1987), 501–516. DOI 10.1007/BF01400352 | MR 0910861
[6] C. W. Gear: The simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory TC-18 (1971), 89–95. DOI 10.1109/TCT.1971.1083221
[7] C. W. Gear, L. R. Petzold: ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal. 21 (1984), 716–728. DOI 10.1137/0721048 | MR 0749366
[8] E. Griepentrog, R. März: Differential-Algebraic Equations and Their Numerical Treatment. Teubner-Verlag, Leipzig, 1986. MR 0881052
[9] E. Hairer, Ch. Lubich, M. Roche: The numerical solution of differential-algebraic systems by Runge-Kutta methods. Lecture Notes in Mathematics Nr.  1409, Springer-Verlag, Berlin, Heidelberg, New York, 1989. MR 1027594
[10] Z. Jackiewicz: One-step methods of any order for neutral functional differential equations. SIAM J. Numer. Anal. 21 (1984), 486–511. DOI 10.1137/0721036 | MR 0744170 | Zbl 0562.65056
[11] Z. Jackiewicz, M. Kwapisz: Convergence of waveform relaxation methods for differential algebraic systems. SIAM J. Numer. Anal., In press. MR 1427465
[12] T. Jankowski: Existence, uniqueness and approximate solutions of problems with a parameter. Zesz. Nauk. Politech. Gdańsk, Mat. 16 (1993), 3–167. Zbl 0893.34062
[13] L. R. Petzold: Order results for implicit Runge-Kutta methods applied to differential/algebraic systems. SIAM J. Numer. Anal. 23 (1986), 837–852. DOI 10.1137/0723054 | MR 0849286 | Zbl 0635.65084
[14] L. Tavernini: One-step methods for the numerical solution of Volterra functional differential equations. SIAM J. Numer. Anal. 8 (1971), 786–795. DOI 10.1137/0708072 | MR 0295617 | Zbl 0231.65070
Partner of
EuDML logo