Previous |  Up |  Next

Article

Title: Convergence of numerical methods for systems of neutral functional-differential-algebraic equations (English)
Author: Jankowski, Tadeusz
Author: Kwapisz, Marian
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 40
Issue: 6
Year: 1995
Pages: 457-472
Summary lang: English
.
Category: math
.
Summary: A general class of numerical methods for solving initial value problems for neutral functional-differential-algebraic systems is considered. Necessary and sufficient conditions under which these methods are consistent with the problem are established. The order of consistency is discussed. A convergence theorem for a general class of methods is proved. (English)
Keyword: neutral functional-differential-algebraic systems
Keyword: consistency
Keyword: convergence
MSC: 34K40
MSC: 65L05
idZBL: Zbl 0853.65077
idMR: MR1353973
DOI: 10.21136/AM.1995.134307
.
Date available: 2009-09-22T17:49:39Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134307
.
Reference: [1] K. E. Brenan, S. L. Campbell, L. R. Petzold: Numerical Solution of Initial-Value Problems in Differential-Algebraic-Equations.North-Holand, New York, Amsterdam, London, 1989. MR 1101809
Reference: [2] S. L. Campbell: Singular Systems of Differential Equations.Pitman, London, 1980. Zbl 0419.34007
Reference: [3] S. L. Campbell: Singular Systems of Differential Equations II.Pitman, London, 1982. Zbl 0482.34008
Reference: [4] J. P. Deuflhard: Recent progress in extrapolation methods for ordinary differential equations.SIAM Rev. 27 (1985), 505–535. Zbl 0602.65047, MR 0812452, 10.1137/1027140
Reference: [5] P. Deuflhard, E. Hairer, J, Zugck: One-step and extrapolation methods for differential-algebraic systems.Numer. Math. 51 (1987), 501–516. MR 0910861, 10.1007/BF01400352
Reference: [6] C. W. Gear: The simultaneous numerical solution of differential-algebraic equations.IEEE Trans. Circuit Theory TC-18 (1971), 89–95. 10.1109/TCT.1971.1083221
Reference: [7] C. W. Gear, L. R. Petzold: ODE methods for the solution of differential/algebraic systems.SIAM J. Numer. Anal. 21 (1984), 716–728. MR 0749366, 10.1137/0721048
Reference: [8] E. Griepentrog, R. März: Differential-Algebraic Equations and Their Numerical Treatment.Teubner-Verlag, Leipzig, 1986. MR 0881052
Reference: [9] E. Hairer, Ch. Lubich, M. Roche: The numerical solution of differential-algebraic systems by Runge-Kutta methods.Lecture Notes in Mathematics Nr.  1409, Springer-Verlag, Berlin, Heidelberg, New York, 1989. MR 1027594
Reference: [10] Z. Jackiewicz: One-step methods of any order for neutral functional differential equations.SIAM J. Numer. Anal. 21 (1984), 486–511. Zbl 0562.65056, MR 0744170, 10.1137/0721036
Reference: [11] Z. Jackiewicz, M. Kwapisz: Convergence of waveform relaxation methods for differential algebraic systems.SIAM J. Numer. Anal., In press. MR 1427465
Reference: [12] T. Jankowski: Existence, uniqueness and approximate solutions of problems with a parameter.Zesz. Nauk. Politech. Gdańsk, Mat. 16 (1993), 3–167. Zbl 0893.34062
Reference: [13] L. R. Petzold: Order results for implicit Runge-Kutta methods applied to differential/algebraic systems.SIAM J. Numer. Anal. 23 (1986), 837–852. Zbl 0635.65084, MR 0849286, 10.1137/0723054
Reference: [14] L. Tavernini: One-step methods for the numerical solution of Volterra functional differential equations.SIAM J. Numer. Anal. 8 (1971), 786–795. Zbl 0231.65070, MR 0295617, 10.1137/0708072
.

Files

Files Size Format View
AplMat_40-1995-6_3.pdf 2.042Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo