Title:
|
Convergence of numerical methods for systems of neutral functional-differential-algebraic equations (English) |
Author:
|
Jankowski, Tadeusz |
Author:
|
Kwapisz, Marian |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
40 |
Issue:
|
6 |
Year:
|
1995 |
Pages:
|
457-472 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A general class of numerical methods for solving initial value problems for neutral functional-differential-algebraic systems is considered. Necessary and sufficient conditions under which these methods are consistent with the problem are established. The order of consistency is discussed. A convergence theorem for a general class of methods is proved. (English) |
Keyword:
|
neutral functional-differential-algebraic systems |
Keyword:
|
consistency |
Keyword:
|
convergence |
MSC:
|
34K40 |
MSC:
|
65L05 |
idZBL:
|
Zbl 0853.65077 |
idMR:
|
MR1353973 |
DOI:
|
10.21136/AM.1995.134307 |
. |
Date available:
|
2009-09-22T17:49:39Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134307 |
. |
Reference:
|
[1] K. E. Brenan, S. L. Campbell, L. R. Petzold: Numerical Solution of Initial-Value Problems in Differential-Algebraic-Equations.North-Holand, New York, Amsterdam, London, 1989. MR 1101809 |
Reference:
|
[2] S. L. Campbell: Singular Systems of Differential Equations.Pitman, London, 1980. Zbl 0419.34007 |
Reference:
|
[3] S. L. Campbell: Singular Systems of Differential Equations II.Pitman, London, 1982. Zbl 0482.34008 |
Reference:
|
[4] J. P. Deuflhard: Recent progress in extrapolation methods for ordinary differential equations.SIAM Rev. 27 (1985), 505–535. Zbl 0602.65047, MR 0812452, 10.1137/1027140 |
Reference:
|
[5] P. Deuflhard, E. Hairer, J, Zugck: One-step and extrapolation methods for differential-algebraic systems.Numer. Math. 51 (1987), 501–516. MR 0910861, 10.1007/BF01400352 |
Reference:
|
[6] C. W. Gear: The simultaneous numerical solution of differential-algebraic equations.IEEE Trans. Circuit Theory TC-18 (1971), 89–95. 10.1109/TCT.1971.1083221 |
Reference:
|
[7] C. W. Gear, L. R. Petzold: ODE methods for the solution of differential/algebraic systems.SIAM J. Numer. Anal. 21 (1984), 716–728. MR 0749366, 10.1137/0721048 |
Reference:
|
[8] E. Griepentrog, R. März: Differential-Algebraic Equations and Their Numerical Treatment.Teubner-Verlag, Leipzig, 1986. MR 0881052 |
Reference:
|
[9] E. Hairer, Ch. Lubich, M. Roche: The numerical solution of differential-algebraic systems by Runge-Kutta methods.Lecture Notes in Mathematics Nr. 1409, Springer-Verlag, Berlin, Heidelberg, New York, 1989. MR 1027594 |
Reference:
|
[10] Z. Jackiewicz: One-step methods of any order for neutral functional differential equations.SIAM J. Numer. Anal. 21 (1984), 486–511. Zbl 0562.65056, MR 0744170, 10.1137/0721036 |
Reference:
|
[11] Z. Jackiewicz, M. Kwapisz: Convergence of waveform relaxation methods for differential algebraic systems.SIAM J. Numer. Anal., In press. MR 1427465 |
Reference:
|
[12] T. Jankowski: Existence, uniqueness and approximate solutions of problems with a parameter.Zesz. Nauk. Politech. Gdańsk, Mat. 16 (1993), 3–167. Zbl 0893.34062 |
Reference:
|
[13] L. R. Petzold: Order results for implicit Runge-Kutta methods applied to differential/algebraic systems.SIAM J. Numer. Anal. 23 (1986), 837–852. Zbl 0635.65084, MR 0849286, 10.1137/0723054 |
Reference:
|
[14] L. Tavernini: One-step methods for the numerical solution of Volterra functional differential equations.SIAM J. Numer. Anal. 8 (1971), 786–795. Zbl 0231.65070, MR 0295617, 10.1137/0708072 |
. |