Previous |  Up |  Next

Article

Title: A general class of entropy statistics (English)
Author: Esteban, M. D.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 3
Year: 1997
Pages: 161-169
Summary lang: English
.
Category: math
.
Summary: To study the asymptotic properties of entropy estimates, we use a unified expression, called the $H^{\varphi _{1},\varphi _{2}}_{h,v}$-entropy. Asymptotic distributions for these statistics are given in several cases when maximum likelihood estimators are considered, so they can be used to construct confidence intervals and to test statistical hypotheses based on one or more samples. These results can also be applied to multinomial populations. (English)
Keyword: entropy
Keyword: asymptotic distribution
Keyword: maximum likelihood estimators
Keyword: testing statistical hypotheses
MSC: 62B10
MSC: 62E20
MSC: 94A17
idZBL: Zbl 0898.62004
idMR: MR1441628
DOI: 10.1023/A:1022447020419
.
Date available: 2009-09-22T17:54:17Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134351
.
Reference: [1] J. Aczél, Z. Daróczy: Characterisierung der Entropien positiver Ordnung und der Shannonschen Entropie.Act. Math. Acad. Sci. Hungar. 14 (1963), 95–121. MR 0191738, 10.1007/BF01901932
Reference: [2] S. Arimoto: Information-theoretical considerations on estimation problems..Information and Control. 19 (1971), 181–194. Zbl 0222.94022, MR 0309224, 10.1016/S0019-9958(71)90065-9
Reference: [3] M. Belis, S. Guiasu: A quantitative-qualitative measure of information in cybernetics systems.IEEE Trans. Inf. Th. IT-4 (1968), 593–594. 10.1109/TIT.1968.1054185
Reference: [4] M.D. Esteban: Entropías y divergencias ponderadas: Aplicaciones estadísticas.Ph.D. Thesis, Universidad Complutense de Madrid, Spain, 1994.
Reference: [5] C. Ferreri: Hypoentropy and related heterogeneity divergence measures.Statistica 40 (1980), 55–118. MR 0586545
Reference: [6] P. Gil: Medidas de incertidumbre e información en problemas de decisión estadística.Rev. de la R. Ac. de CC. Exactas, Físicas y Naturales de Madrid LXIX (1975), 549–610. MR 0394956
Reference: [7] J. Havrda, F. Charvat: Concept of structural $\alpha $-entropy.Kybernetika 3 (1967), 30–35. MR 0209067
Reference: [8] J.N. Kapur: Generalized entropy of order $\alpha $ and type $\beta $.The Math. Seminar 4 (1967), 78–82. MR 0269428
Reference: [9] C.F. Picard: The use of information theory in the study of the diversity of biological populations.Proc. Fifth Berk. Symp. IV, 1979, pp. 163–177.
Reference: [10] C.R. Rao: Linear statistical inference and its applications. 2nd ed.John Wiley, New York, 1973. Zbl 0256.62002, MR 0346957
Reference: [11] A. Renyi: On the measures of entropy and information.Proc. 4th Berkeley Symp. Math. Statist. and Prob. 1, 1961, pp. 547–561. MR 0132570
Reference: [12] A.P. Sant’anna; Taneja, I.J.: Trigonometric entropies, Jensen difference divergences and error bounds.Infor. Sci. 35 (1985), 145–156. Zbl 0582.94009, MR 0794765
Reference: [13] C.E. Shannon: A mathematical theory of communication.Bell. System Tech. J. 27 (1948), 379–423. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x
Reference: [14] B.D. Sharma, D.P. Mittal: New non-additive measures of relative information.J. Comb. Inform. & Syst. Sci. 2 (1975), 122–133. MR 0476167
Reference: [15] B.D. Sharma, I.J. Taneja: Entropy of type ($\alpha ,\beta $ and other generalized measures in information theory.Metrika 22 (1975), 205–215. MR 0398670, 10.1007/BF01899728
Reference: [16] B.D. Sharma, I.J. Taneja: Three generalized additive measures of entropy.Elect. Infor. Kybern 13 (1977), 419–433. MR 0530208
Reference: [17] I.J. Taneja: A study of generalized measures in information theory.Ph.D. Thesis. University of Delhi, 1975.
Reference: [18] R.S. Varma: Generalizations of Renyi’s entropy of order $\alpha $.J. Math. Sci. 1 (1966), 34–48. Zbl 0166.15401, MR 0210515
.

Files

Files Size Format View
AplMat_42-1997-3_1.pdf 330.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo