Previous |  Up |  Next

Article

Title: Shape optimization of materially non-linear bodies in contact (English)
Author: Haslinger, J.
Author: Mäkinen, R. A. E.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 3
Year: 1997
Pages: 171-193
Summary lang: English
.
Category: math
.
Summary: Optimal shape design problem for a deformable body in contact with a rigid foundation is studied. The body is made from material obeying a nonlinear Hooke’s law. We study the existence of an optimal shape as well as its approximation with the finite element method. Practical realization with nonlinear programming is discussed. A numerical example is included. (English)
Keyword: shape optimization
Keyword: sensitivity analysis
Keyword: stress-strain relations
Keyword: contact
MSC: 49J20
MSC: 49K20
MSC: 49Q10
MSC: 73C50
MSC: 73T05
MSC: 73k40
MSC: 74P99
idZBL: Zbl 0902.49024
idMR: MR1441629
DOI: 10.1023/A:1022465504489
.
Date available: 2009-09-22T17:54:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134352
.
Reference: [1] D. Begis and R. Glowinski: Application de la méthode des éléments finis à  l’approximation d’un problème de domaine optimal.Appl. Math. & Optim. 2 (1975), 130–169. MR 0443372, 10.1007/BF01447854
Reference: [2] D. Chenais: On the existence of a solution in a domain identification problem.J. Math. Anal. Appl. 52 (1975), 189–289. Zbl 0317.49005, MR 0385666, 10.1016/0022-247X(75)90091-8
Reference: [3] J. Haslinger and A. Klarbring: On almost constant contact stress distributions by shape optimization.Struct. Optimiz. 5 (1993), 213–216. 10.1007/BF01743581
Reference: [4] J. Haslinger and R. Mäkinen: Shape optimization of elasto-plastic bodies under plane strains: sensitivity analysis and numerical implementation.Struct. Optimiz. 4 (1992), 133–141. 10.1007/BF01742734
Reference: [5] J. Haslinger and P. Neittaanmäki: Finite Element Approximation for Optimal Shape, Material and Topology Design.Chichester: John Wiley & Sons, 1996. MR 1419500
Reference: [6] J. Haslinger, P. Neittaanmäki and T. Tiihonen: Shape optimization of an elastic body in contact based on penalization of the state.Apl. Mat. 31 (1986), 54–77. MR 0836802
Reference: [7] I. Hlaváček: Inequalities of Korn’s type uniform with respect to a class of domains.Apl. Mat. 34 (1989), 105–112. MR 0990298
Reference: [8] : The NAG Fortran Library, Mark 16.(1993), Oxford: The Numerical Algorithms Group Limited.
Reference: [9] J. Nečas, and I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: an Introduction.Amsterdam: Elsevier, 1981. MR 0600655
Reference: [10] J. Nečas and I. Hlaváček: Solution of Signorini’s contact problem in the deformation theory of plasticity by secant modules method.Apl. Mat. 28 (1983), 199–214. MR 0701739
Reference: [11] I. Hlaváček, J. Haslinger, J. Nečas and J. Lovíšek: Solution of Variational Inequalities in Mechanics.Applied Mathematical Sciences 66, Springer-Verlag, 1988. MR 0952855
Reference: [12] J. Sokołowski and J.-P. Zolesio: Introduction to Shape Optimization: Shape Sensitivity Analysis.Berlin: Springer Verlag, 1992. MR 1215733
Reference: [13] K. Washizu: Variational Methods in Elasticity and Plasticity (second edition).Oxford: Pergamon Press, 1974. MR 0391680
.

Files

Files Size Format View
AplMat_42-1997-3_2.pdf 454.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo