Article
Keywords:
parameter identification; parabolic problem; finite element method; Crank-Nicolson scheme; least squares method; heat equation; inverse problem; error bounds
Summary:
The identification problem of a functional coefficient in a parabolic equation is considered. For this purpose an output least squares method is introduced, and estimates of the rate of convergence for the Crank-Nicolson time discretization scheme are proved, the equation being approximated with the finite element Galerkin method with respect to space variables.
References:
                        
[1] S. C. Brenner and L. R. Scott: 
The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer-Verlag vol. 15, New York, 1994. 
MR 1278258[2] P. G. Ciarlet: 
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. 
MR 0520174 | 
Zbl 0383.65058[3] J. Douglas, Jr. and T. Dupont: 
Galerkin methods for parabolic equations with nonlinear boundary conditions. Numer. Math. 20 (1973), 213–237. 
DOI 10.1007/BF01436565 | 
MR 0319379[4] G. Fairweather: 
Finite Element Galerkin Methods for Differential Equations, Lecture notes in pure and applied mathematics vol. 34. Marcel Dekker, Inc., New York, 1978. 
MR 0495013[6] T. Kärkkäinen: 
Error Estimates for Distributed Parameter Identification Problems. PhD thesis, University of Jyäskylä, Department of Mathematics, Report 65, 1995. 
MR 1332491[7] M. Luskin and R. Rannacher: 
On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19 (1981), 93–113. 
MR 0646596[9] X.-C. Tai and T. Kärkkäinen: 
Identification of a nonlinear parameter in a parabolic equation from a linear equation. Comp. Appl. Math. 14 (1995), 157–184. 
MR 1364156[10] V. Thomée: 
Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics vol. 1054. Springer-Verlag, Berlin Heidelberg, 1984. 
MR 0744045[11] M. F. Wheeler: 
A priori $L^2$ error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723–759. 
DOI 10.1137/0710062 | 
MR 0351124