Previous |  Up |  Next


linear model with dispersions depending on the mean value parameters; locally best linear-quadratic unbiased estimator (LBLQUE) of mean value parameters
The paper concludes our investigations in looking for the locally best linear-quadratic estimators of mean value parameters and of the covariance matrix elements in a special structure of the linear model (2 variables case) where the dispersions of the observed quantities depend on the mean value parameters. Unfortunately there exists no linear-quadratic improvement of the linear estimator of mean value parameters in this model.
[1] Kubáček L.: Foundations of Estimation Theory. Elsevier, Amsterdam, 1988. MR 0995671
[2] Rao C.R. and Mitra S.K.: Generalized Inverse of Matrices and Its Applications. J. Wiley, New York, 1971. MR 0338013
[3] Rinner K., Benz F.: Jordan/Eggert/Kneissl Handbuch der Vermessungskunde. Band VI, Stuttgart, 1966.
[4] Wimmer G.: Linear model with variances depending on the mean value. Mathematica Slovaca 42 (1992), 223–238. MR 1170107 | Zbl 0764.62055
[5] Wimmer G.: Uniformly best linear-quadratic estimator in a special structure of the regression model. Acta Math. Univ. Comenianae LXI (1992), 243–250. MR 1205877 | Zbl 0819.62061
[6] Wimmer G.: Estimation in a special structure of the linear model. Mathematica Slovaca 43 (1993), 221–264. MR 1274604 | Zbl 0779.62061
[7] Wimmer G.: Linear-quadratic estimators in a special structure of the linear model. Applications of Mathematics 40 (1995), 81–105. MR 1314481 | Zbl 0832.62050
[8] Wimmer G.: Covariance matrix elements estimation: Special linear model without and with repeated measurement. Mathematica Slovaca 47 (1997), . MR 1796337
Partner of
EuDML logo