[1] A.Ben-Artzi, A.Eden, C.Foiaş and B.Nicolaenko: 
Hölder continuity for the inverse of Mañé’s projection. J. Math. Anal. Appl. vol. 178, 1993, pp. 22–29. 
MR 1231724 
[2] P.Constantin and C.Foiaş: 
Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations. Comm. Pure Appl. Math. vol. 38, 1985, pp. 1–27. 
DOI 10.1002/cpa.3160380102 | 
MR 0768102 
[3] P.Constantin, C.Foiaş, O.P.Manley and R.Temam: 
Determining modes and fractal dimension of turbulent flows. J. Fluid. Mech. vol. 150, 1985, pp. 427–440. 
DOI 10.1017/S0022112085000209 | 
MR 0794051 
[4] P.Constantin, C.Foiaş, B.Nicolaenko and R.Temam: 
Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer-Verlag, New-York, 1989. 
MR 0966192 
[5] P.Constantin, C.Foiaş, B.Nicolaenko and R.Temam: 
Spectral barriers and inertial manifolds for dissipative partial differential equations. J. Dyn. Diff. Equ. vol. 1, 1989, pp. 45–73. 
MR 1010960 
[6] P.Constantin, C.Foiaş and R.Temam: 
Attractors representing turbulent flows. Mem. Amer. Math. Soc. vol. 53, 1985, pp. 1–67. 
MR 0776345 
[7] A.Debussche and R.Temam: Convergent families of approximate inertial manifolds:  J. Math. Pures Appl. vol. 73, 1994, pp. 489–522. 
MR 1300986 
[8] A.Eden, C.Foiaş, B.Nicolaenko and Z.S.She: 
Exponential attractors and their relevance to fluid dynamics systems. Phys. vol. D 63, 1993, pp. 350–360. 
MR 1210011 
[9] A.Eden, C.Foiaş and R.Temam: 
Local and global Lyapunov exponents. J.Dyn.Diff.Equ. vol. 3, 1991, pp. 133–177. 
MR 1094726 
[10] E.Fabes, M.Luskin and G.R.Sell: 
Construction of inertial manifolds by elliptic regularization. J. Differential Equations vol. 89, 1991, pp. 355–387. 
MR 1091482 
[11] C.Foiaş, O.P.Manley and R.Temam: 
Approximate inertial manifolds and effective viscosity in turbulent flows. Phys. Fluids vol. A 3, 1991, pp. 898–911. 
MR 1205478 
[12] C.Foiaş, O.P.Manley and R.Temam: 
Iterated approximate inertial manifolds for Navier-Stokes equations in 2-D. J. Math. Anal. Appl. vol. 178, 1993, pp. 567–583. 
DOI 10.1006/jmaa.1993.1326 | 
MR 1238896 
[13] C.Foiaş, O.Manley and R.Temam: 
Modelling of the interaction of small and large eddies in two dimensional turbulent flows. Math. Mod. Numer. Anal. vol. 22, 1988, pp. 93–118. 
DOI 10.1051/m2an/1988220100931 | 
MR 0934703 
[14] C.Foiaş, B.Nicolaenko, G.Sell and R.Temam: 
Inertial manifolds for the Kuramoto Sivashinsky equation and an estimate of their lowest dimension. J. Math. Pures Appl. vol. 67, 1988, pp. 197–226. 
MR 0964170 
[15] C.Foiaş, G.R.Sell and R.Temam: 
Inertial manifolds for nonlinear evolutionary equations. J. Differential Equations vol. 73, 1988, pp. 309–353. 
MR 0943945 
[16] C.Foiaş, G.R.Sell and E.S.Titi: 
Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations. J. Dyn. Diff. Equ. vol. 1, 1989, pp. 199–244. 
MR 1010966 
[19] D.A.Jones and E.S.Titi: 
A remark on quasi-stationary approximate inertial manifolds for the Navier-Stokes equations. SIAM J. Math. Anal. vol. 25, 1994, pp. 894–914. 
DOI 10.1137/S0036141092230428 | 
MR 1271316 
[20] M.Kwak: 
Finite-dimensional inertial forms for the 2D Navier-Stokes equations. Indiana Univ. Math. J. vol. 41, 1992, pp. 925–981. 
MR 1206337 | 
Zbl 0765.35034 
[21] J.Laminie, F.Pascal and R.Temam: 
Implementation and numerical analysis of the nonlinear Galerkin methods with finite elements discretization. Appl. Num. Math. vol. 15, 1994, pp. 219–246. 
DOI 10.1016/0168-9274(94)00021-2 | 
MR 1298243 
[22] R.Mañé: 
On the dimension of the compact invariant sets of certain non-linear maps. Lecture Notes in Math. 898 (1981). Springer-Verlag, New York, pp. 230–242. 
MR 0654892 
[24] L.A.Santaló: 
Integral Geometry and Geometric Probability. Addison-Wesley, Reading, 1976. 
MR 0433364 | 
Zbl 0342.53049 
[26] R.Temam: 
Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. 68, Springer-Verlag, New-York, 1988. 
MR 0953967 | 
Zbl 0662.35001 
[28] E.S.Titi: 
On approximate inertial manifolds to the Navier-Stokes equations. J. Math. Anal. Appl. vol. 149, 1990, pp. 540–557. 
MR 1057693 | 
Zbl 0723.35063