Previous |  Up |  Next

Article

Title: An alternative proof of Painlevé's theorem (English)
Author: Němec, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 4
Year: 2000
Pages: 291-299
Summary lang: English
.
Category: math
.
Summary: In this article we show some aspects of analytical and numerical solution of the $n$-body problem, which arises from the classical Newtonian model for gravitation attraction. We prove the non-existence of stationary solutions and give an alternative proof for Painlevé’s theorem. (English)
Keyword: $n$-body problem
Keyword: ordinary differential equations
Keyword: Painlevé’s theorem
MSC: 70F10
MSC: 70F16
idZBL: Zbl 1058.70015
idMR: MR1763173
DOI: 10.1023/A:1022371412511
.
Date available: 2009-09-22T18:03:59Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134440
.
Reference: [1] P. Andrle: Foundation of Celestial Mechanics.Academia, Praha, 1971. (Czech)
Reference: [2] P. Andrle: Celestial Mechanics.Academia, Praha, 1987. (Czech)
Reference: [3] J. Kofroň: Ordinary Differential Equations in Real Space.Univerzita Karlova, Praha, 1990. (Czech)
Reference: [4] M. Křížek: On the three-body problem.Rozhledy mat.-fyz. 70 (1992), 105–112. (Czech)
Reference: [5] M. Křížek: Numerical experience with the three-body problem.Comput. Appl. Math. 63 (1995), 403–409. MR 1365579, 10.1016/0377-0427(95)00067-4
Reference: [6] M. Křížek: Numerical experience with the finite speed of gravitational influence.Math. Comput. Simulation 50 (1999), 237–245. MR 1717610, 10.1016/S0378-4754(99)00085-3
Reference: [7] J. Kurzweil: Ordinary Differential Equations.Elsevier, Amsterdam, 1986. Zbl 0667.34002, MR 0929466
Reference: [8] Ch. Marchal: The Three Body Problem.Elsevier, Amsterdam, 1990. Zbl 0719.70006, MR 1124619
Reference: [9] A. Marciniak: Numerical Solution of the $N$-Body Problem.Reidel Publishing Company, Dordrecht, 1985. MR 0808778
Reference: [10] P. Painlevé: Leçons sur la Théorie Analytic des Equations Différentielles.Hermann, Paris, 1897.
Reference: [11] D. G. Saari, Z. Xia: Off to infinity in finite time.Notices Amer. Math. Soc. 42 (1995), 538–546. MR 1324734
.

Files

Files Size Format View
AplMat_45-2000-4_3.pdf 320.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo