Previous |  Up |  Next

Article

Title: A remark on the local Lipschitz continuity of vector hysteresis operators (English)
Author: Krejčí, Pavel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 1
Year: 2001
Pages: 1-11
Summary lang: English
.
Category: math
.
Summary: It is known that the vector stop operator with a convex closed characteristic $Z$ of class $C^1$ is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping $n$ is Lipschitz continuous on the boundary $\partial Z$ of $Z$. We prove that in the regular case, this condition is also necessary. (English)
Keyword: variational inequality
Keyword: hysteresis operators
MSC: 34C55
MSC: 47J40
MSC: 49N60
MSC: 58E35
MSC: 74C05
MSC: 78A25
idZBL: Zbl 1067.34503
idMR: MR1808426
DOI: 10.1023/A:1013733403484
.
Date available: 2009-09-22T18:05:30Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134455
.
Reference: [1] H.-D. Alber: Materials with Memory. Lecture Notes in Mathematics, Vol. 1682.Springer-Verlag, Berlin-Heidelberg, 1998. MR 1619546
Reference: [2] A. Bergqvist: Magnetic vector hysteresis model with dry friction-like pinning.Physica B 233 (1997), 342–347. 10.1016/S0921-4526(97)00319-0
Reference: [3] H. Brézis: Opérateurs Maximaux Monotones.North-Holland Math. Studies, Amsterdam, 1973.
Reference: [4] M. Brokate: Elastoplastic constitutive laws of nonlinear kinematic hardening type.In: Functional Analysis with Current Applications in Science, Technology and Industry (M. Brokate, A. H. Siddiqi, eds.), Pitman Res. Notes Math. Ser., 377, Longman, Harlow, 1998, pp. 238–272. Zbl 0911.73021, MR 1607891
Reference: [5] M. Brokate, P. Krejčí: Wellposedness of kinematic hardening models in elastoplasticity.Math. Modelling Numer. Anal. 32 (1998), 177–209. MR 1622607, 10.1051/m2an/1998320201771
Reference: [6] W. Desch: Local Lipschitz continuity of the stop operator.Appl. Math. 43 (1998), 461–477. Zbl 0937.47058, MR 1652108, 10.1023/A:1023221405455
Reference: [7] W. Desch, J. Turi: The stop operator related to a convex polyhedron.J. Differential Equations 157 (1999), 329–347. MR 1710220, 10.1006/jdeq.1998.3601
Reference: [8] P. Dupuis, H. Ishii: On Lipschitz continuity of the solution mapping to the Skorokhod problem.Stochastics Stochastics Rep. 35 (1991), 31–62. MR 1110990, 10.1080/17442509108833688
Reference: [9] P. Dupuis, A. Nagurney: Dynamical systems and variational inequalities.Ann. Oper. Res. 44 (1993), 9–42. MR 1246835
Reference: [10] G. Duvaut, J.-L. Lions: Inequalities in Mechanics and Physics.Springer-Verlag, Berlin, 1976, French edition: Dunod, Paris, 1972. MR 0521262
Reference: [11] M. A. Krasnoseľskiǐ, A. V. Pokrovskiǐ: Systems with Hysteresis.Springer-Verlag, Berlin, 1989, Russian edition: Nauka, Moscow, 1983. MR 0742931
Reference: [12] P. Krejčí: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto Int. Ser. Math. Sci. Appl., Vol. 8.Gakkōtosho, Tokyo, 1996. MR 2466538
Reference: [13] P. Krejčí: Evolution variational inequalities and multidimensional hysteresis operators.In: Nonlinear Differential Equations (P. Drábek, P. Krejčí and P. Takáč, eds.). Research Notes in Mathematics, Vol. 404, Chapman & Hall/CRC, London, 1999, pp. 47–110. MR 1695378
Reference: [14] J.-J. Moreau: Evolution problem associated with a moving convex set in a Hilbert space.J. Differential Eqations 26 (1977), 347–374. MR 0508661
Reference: [15] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [16] A. Visintin: Differential Models of Hysteresis.Springer-Verlag, Berlin-Heidelberg, 1994. Zbl 0820.35004, MR 1329094
.

Files

Files Size Format View
AplMat_46-2001-1_1.pdf 347.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo