Title:
|
A remark on the local Lipschitz continuity of vector hysteresis operators (English) |
Author:
|
Krejčí, Pavel |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
46 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
1-11 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is known that the vector stop operator with a convex closed characteristic $Z$ of class $C^1$ is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping $n$ is Lipschitz continuous on the boundary $\partial Z$ of $Z$. We prove that in the regular case, this condition is also necessary. (English) |
Keyword:
|
variational inequality |
Keyword:
|
hysteresis operators |
MSC:
|
34C55 |
MSC:
|
47J40 |
MSC:
|
49N60 |
MSC:
|
58E35 |
MSC:
|
74C05 |
MSC:
|
78A25 |
idZBL:
|
Zbl 1067.34503 |
idMR:
|
MR1808426 |
DOI:
|
10.1023/A:1013733403484 |
. |
Date available:
|
2009-09-22T18:05:30Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134455 |
. |
Reference:
|
[1] H.-D. Alber: Materials with Memory. Lecture Notes in Mathematics, Vol. 1682.Springer-Verlag, Berlin-Heidelberg, 1998. MR 1619546 |
Reference:
|
[2] A. Bergqvist: Magnetic vector hysteresis model with dry friction-like pinning.Physica B 233 (1997), 342–347. 10.1016/S0921-4526(97)00319-0 |
Reference:
|
[3] H. Brézis: Opérateurs Maximaux Monotones.North-Holland Math. Studies, Amsterdam, 1973. |
Reference:
|
[4] M. Brokate: Elastoplastic constitutive laws of nonlinear kinematic hardening type.In: Functional Analysis with Current Applications in Science, Technology and Industry (M. Brokate, A. H. Siddiqi, eds.), Pitman Res. Notes Math. Ser., 377, Longman, Harlow, 1998, pp. 238–272. Zbl 0911.73021, MR 1607891 |
Reference:
|
[5] M. Brokate, P. Krejčí: Wellposedness of kinematic hardening models in elastoplasticity.Math. Modelling Numer. Anal. 32 (1998), 177–209. MR 1622607, 10.1051/m2an/1998320201771 |
Reference:
|
[6] W. Desch: Local Lipschitz continuity of the stop operator.Appl. Math. 43 (1998), 461–477. Zbl 0937.47058, MR 1652108, 10.1023/A:1023221405455 |
Reference:
|
[7] W. Desch, J. Turi: The stop operator related to a convex polyhedron.J. Differential Equations 157 (1999), 329–347. MR 1710220, 10.1006/jdeq.1998.3601 |
Reference:
|
[8] P. Dupuis, H. Ishii: On Lipschitz continuity of the solution mapping to the Skorokhod problem.Stochastics Stochastics Rep. 35 (1991), 31–62. MR 1110990, 10.1080/17442509108833688 |
Reference:
|
[9] P. Dupuis, A. Nagurney: Dynamical systems and variational inequalities.Ann. Oper. Res. 44 (1993), 9–42. MR 1246835 |
Reference:
|
[10] G. Duvaut, J.-L. Lions: Inequalities in Mechanics and Physics.Springer-Verlag, Berlin, 1976, French edition: Dunod, Paris, 1972. MR 0521262 |
Reference:
|
[11] M. A. Krasnoseľskiǐ, A. V. Pokrovskiǐ: Systems with Hysteresis.Springer-Verlag, Berlin, 1989, Russian edition: Nauka, Moscow, 1983. MR 0742931 |
Reference:
|
[12] P. Krejčí: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto Int. Ser. Math. Sci. Appl., Vol. 8.Gakkōtosho, Tokyo, 1996. MR 2466538 |
Reference:
|
[13] P. Krejčí: Evolution variational inequalities and multidimensional hysteresis operators.In: Nonlinear Differential Equations (P. Drábek, P. Krejčí and P. Takáč, eds.). Research Notes in Mathematics, Vol. 404, Chapman & Hall/CRC, London, 1999, pp. 47–110. MR 1695378 |
Reference:
|
[14] J.-J. Moreau: Evolution problem associated with a moving convex set in a Hilbert space.J. Differential Eqations 26 (1977), 347–374. MR 0508661 |
Reference:
|
[15] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655 |
Reference:
|
[16] A. Visintin: Differential Models of Hysteresis.Springer-Verlag, Berlin-Heidelberg, 1994. Zbl 0820.35004, MR 1329094 |
. |