Previous |  Up |  Next

Article

Title: About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation (English)
Author: Vanselow, Reiner
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 1
Year: 2001
Pages: 13-28
Summary lang: English
.
Category: math
.
Summary: The starting point of the analysis in this paper is the following situation: “In a bounded domain in $\mathbb{R}^2$, let a finite set of points be given. A triangulation of that domain has to be found, whose vertices are the given points and which is ‘suitable’ for the linear conforming Finite Element Method (FEM).” The result of this paper is that for the discrete Poisson equation and under some weak additional assumptions, only the use of Delaunay triangulations preserves the maximum principle. (English)
Keyword: linear conforming finite element method
Keyword: Delaunay triangulation
Keyword: discrete maximum principle
MSC: 35J05
MSC: 65N30
MSC: 65N50
idZBL: Zbl 1066.65132
idMR: MR1808427
DOI: 10.1023/A:1013775420323
.
Date available: 2009-09-22T18:05:36Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134456
.
Reference: [1] L. Angermann: An Introduction to Finite Volume Methods for Linear Elliptic Equations of Second Order.Preprint No. 164, Universität Erlangen-Nürnberg, Institut für Angewandte Mathematik I, 1995. MR 1370105
Reference: [2] D. Braess: Finite Elemente.Springer-Verlag, Berlin, 1992. Zbl 0754.65084
Reference: [3] F. Brezzi, M. Fortin: Mixed and Hybrid Finite Element Methods.Springer-Verlag, New York, 1991. MR 1115205
Reference: [4] A. K. Cline, R. J. Renka: A constrained two-dimensional triangulation and the solution of closest node problems in the presence of barriers.SIAM J. Numer. Anal. 27 (1990), 1305–1321. MR 1061131
Reference: [5] Ch. Großmann, H.-G. Roos: Numerik partieller Differentialgleichungen.Teubner, Stuttgart, 1992. MR 1219087
Reference: [6] F. Kratsch, H.-G. Roos: Diskrete Maximumprinzipien und deren Anwendung.Preprint 07-02-87, TU Dresden, 1987.
Reference: [7] F. P. Preparata, M. I. Shamos: Computational Geometry. An Introduction.Springer-Verlag, New York, 1985. MR 0805539
Reference: [8] V. Ruas Santos: On the strong maximum principle for some piecewise linear finite element approximate problems of nonpositive type.J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 473–491. MR 0672072
Reference: [9] R. Vanselow: Relations between FEM and FVM applied to the Poisson equation.Computing 57 (1996), 93–104. Zbl 0858.65109, MR 1407346, 10.1007/BF02276874
Reference: [10] G. Windisch: M-Matrices in Numerical Analysis.Teubner, Leipzig, 1989. MR 1059459
.

Files

Files Size Format View
AplMat_46-2001-1_2.pdf 430.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo