Title:
|
Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition (English) |
Author:
|
Říhová-Škabrahová, Dana |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
46 |
Issue:
|
2 |
Year:
|
2001 |
Pages:
|
103-144 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part $\Gamma \!_1$ of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand side by the explicit Euler method). The scheme we get is linear. The strong convergence of the method is proved under the assumptions that the boundary $\partial \Omega $ is piecewise of class $C^3$ and the initial condition belongs to $L_2$ only. Strong monotonicity and Lipschitz continuity of the form $a(v,w)$ is not an assumption, but a property of this form following from its physical background. (English) |
Keyword:
|
finite element method |
Keyword:
|
parabolic-elliptic problems |
Keyword:
|
two-dimensional electromagnetic field |
MSC:
|
35M10 |
MSC:
|
65M12 |
MSC:
|
65M60 |
MSC:
|
65N30 |
MSC:
|
78M10 |
idZBL:
|
Zbl 1066.65117 |
idMR:
|
MR1818081 |
DOI:
|
10.1023/A:1013783722140 |
. |
Date available:
|
2009-09-22T18:06:07Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134460 |
. |
Reference:
|
[1] J. Céa: Optimisation.Dunod, Paris, 1971. MR 0298892 |
Reference:
|
[2] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174 |
Reference:
|
[3] M. Crouzeix: Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques.Numer. Math. 35 (1980), 257–276. Zbl 0419.65057, MR 0592157, 10.1007/BF01396412 |
Reference:
|
[4] N. A. Demerdash, D. H. Gillot: A new approach for determination of eddy current and flux penetration in nonlinear ferromagnetic materials.IEEE Trans. MAG-10 (1974), 682–685. |
Reference:
|
[5] J. Douglas, T. Dupont: Alternating-direction Galerkin methods in rectangles.In: Proceedings 2nd Sympos. Numerical Solution of Partial Differential Equations II, Academic Press, London and New York, 1971, pp. 133–214. MR 0273830 |
Reference:
|
[6] M. Feistauer, A. Ženíšek: Finite element solution of nonlinear elliptic problems.Numer. Math. 50 (1987), 451–475. MR 0875168 |
Reference:
|
[7] S. Fučík, A. Kufner: Nonlinear Differential Equations.SNTL, Praha, 1978. |
Reference:
|
[8] D. Říhová-Škabrahová: A note to Friedrichs’ inequality.Arch. Math. 35 (1999), 317–327. MR 1744519 |
Reference:
|
[9] A. Ženíšek: Curved triangular finite $C^m$-elements.Apl. Mat. 23 (1978), 346–377. MR 0502072 |
Reference:
|
[10] A. Ženíšek: Approximations of parabolic variational inequalities.Appl. Math. 30 (1985), 11–35. MR 0779330 |
Reference:
|
[11] A. Ženíšek: Finite element variational crimes in parabolic-elliptic problems.Numer. Math. 55 (1989), 343–376. MR 0993476, 10.1007/BF01390058 |
Reference:
|
[12] A. Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations.Academic Press, London, 1990. MR 1086876 |
Reference:
|
[13] M. Zlámal: Curved elements in the finite element method.I. SIAM J. Numer. Anal. 10 (1973), 229–240. MR 0395263, 10.1137/0710022 |
Reference:
|
[14] M. Zlámal: Finite element solution of quasistationary nonlinear magnetic field.RAIRO Modél. Math. Anal. Numér. 16 (1982), 161–191. MR 0661454, 10.1051/m2an/1982160201611 |
Reference:
|
[15] M. Zlámal: A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields.Math. Comp. 41 (1983), 425–440. MR 0717694, 10.2307/2007684 |
. |