Previous |  Up |  Next

Article

Title: Semiregular hermite tetrahedral finite elements (English)
Author: Ženíšek, Alexander
Author: Hoderová-Zlámalová, Jana
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 4
Year: 2001
Pages: 295-315
Summary lang: English
.
Category: math
.
Summary: Tetrahedral finite $C^0$-elements of the Hermite type satisfying the maximum angle condition are presented and the corresponding finite element interpolation theorems in the maximum norm are proved. (English)
Keyword: tetrahedral finite elements of the Hermite type
Keyword: maximum and minimum angle conditions
Keyword: finite element interpolation theorems
MSC: 35J05
MSC: 65N12
MSC: 65N30
MSC: 65N50
idZBL: Zbl 1066.65118
idMR: MR1842552
DOI: 10.1023/A:1013700225774
.
Date available: 2009-09-22T18:07:06Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134469
.
Reference: [1] T.  Apel, M.  Dobrowolski: Anisotropic interpolation with applications to the finite element method.Computing 47 (1992), 277–293. MR 1155498, 10.1007/BF02320197
Reference: [2] I.  Babuška, A. K.  Aziz: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214–226. MR 0455462, 10.1137/0713021
Reference: [3] R. E.  Barnhill, J. A.  Gregory: Sard kernel theorems on triangular domains with applications to finite element error bounds.Numer. Math. 25 (1976), 215–229. MR 0458000, 10.1007/BF01399411
Reference: [4] R. G.  Durán: Error estimates for 3-d narrow finite elements.Math. Comp. 68 (1999), 187–199. MR 1489970, 10.1090/S0025-5718-99-00994-1
Reference: [5] J. A.  Gregory: Error bounds for linear interpolation on triangles.In: Proc. MAFELAP II, J. R. Whiteman (ed.), Academic Press, London, 1976, pp. 163–170. MR 0458795
Reference: [6] P.  Jamet: Estimations d’erreur pour des éléments finis droits presque dégénérés.RAIRO Anal. Numér. 10 (1976), 43–61. MR 0455282
Reference: [7] M.  Křížek: On semiregular families of triangulations and linear interpolation.Appl. Math. 36 (1991), 223–232. MR 1109126
Reference: [8] M.  Křížek: On the maximum angle condition for linear tetrahedral elements.SIAM J.  Numer. Anal. 29 (1992), 513–520. MR 1154279, 10.1137/0729031
Reference: [9] N.  Al  Shenk: Uniform error estimates for certain narrow Lagrange finite elements.Math. Comp. 63 (1994), 105–119. Zbl 0807.65003, MR 1226816, 10.1090/S0025-5718-1994-1226816-5
Reference: [10] J. L.  Synge: The Hypercircle in Mathematical Physics.Cambridge Univ. Press, London, 1957. Zbl 0079.13802, MR 0097605
Reference: [11] A.  Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations.Academic Press, London, 1990. MR 1086876
Reference: [12] A.  Ženíšek: Maximum-angle condition and triangular finite elements of Hermite type.Math. Comp. 64 (1995), 929–941. MR 1297481, 10.2307/2153477
Reference: [13] M.  Zlámal: On the finite element method.Numer. Math. 12 (1968), 394–409. 10.1007/BF02161362
.

Files

Files Size Format View
AplMat_46-2001-4_3.pdf 407.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo