Previous |  Up |  Next

Article

Title: Interpolation formulas for functions of exponential type (English)
Author: Kofroň, Josef
Author: Moravcová, Emílie
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 6
Year: 2001
Pages: 401-417
Summary lang: English
.
Category: math
.
Summary: In the paper we present a derivative-free estimate of the remainder of an arbitrary interpolation rule on the class of entire functions which, moreover, belong to the space $L^2_{(-\infty ,+\infty )}$. The theory is based on the use of the Paley-Wiener theorem. The essential advantage of this method is the fact that the estimate of the remainder is formed by a product of two terms. The first term depends on the rule only while the second depends on the interpolated function only. The obtained estimate of the remainder of Lagrange’s rule shows the efficiency of the method of estimate. The first term of the estimate is a starting point for the construction of the optimal rule; only the optimal rule with prescribed nodes of the interpolatory rule is investigated. An example illustrates the developed theory. (English)
Keyword: entire functions
Keyword: Paley-Wiener theorem
Keyword: numerical interpolation
Keyword: optimal interpolatory rule with prescribed nodes
Keyword: remainder estimate
MSC: 41A05
MSC: 41A50
MSC: 41A80
MSC: 65D05
idZBL: Zbl 1065.65011
idMR: MR1865514
DOI: 10.1023/A:1013760511662
.
Date available: 2009-09-22T18:07:47Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134475
.
Reference: [1] I. S. Gradshtejn, I. M. Ryzhik: Tables of Integrals, Sums, Series and Products.Fizmatgiz, Moskva, 1963. (Russian)
Reference: [2] G. Hämmerlin: Über ableitungsfreie Schranken für Quadraturfehler II. Ergänzungen und Möglichkeiten zur Verbesserung.Numer. Math. 7 (1965), 232–237. MR 0184427, 10.1007/BF01436079
Reference: [3] W. Rudin: Real and Complex Analysis.McGraw-Hill, New York, 1966. Zbl 0142.01701, MR 0210528
.

Files

Files Size Format View
AplMat_46-2001-6_1.pdf 373.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo