Previous |  Up |  Next

Article

Title: Application of relaxation scheme to degenerate variational inequalities (English)
Author: Babušíková, Jela
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 6
Year: 2001
Pages: 419-437
Summary lang: English
.
Category: math
.
Summary: In this paper we are concerned with the solution of degenerate variational inequalities. To solve this problem numerically, we propose a numerical scheme which is based on the relaxation scheme using non-standard time discretization. The approximate solution on each time level is obtained in the iterative way by solving the corresponding elliptic variational inequalities. The convergence of the method is proved. (English)
Keyword: degenerate variational inequalities
Keyword: numerical solution of variational inequalities
Keyword: free boundary problem
Keyword: oxygen diffusion problem
MSC: 35K85
MSC: 35R35
MSC: 49J40
MSC: 65K10
MSC: 65N22
idZBL: Zbl 1061.49004
idMR: MR1865515
DOI: 10.1023/A:1013712628500
.
Date available: 2009-09-22T18:07:53Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134476
.
Reference: [1] H. W. Alt, S. Luckhaus: Quasilinear elliptic-parabolic differential equations.Math.  Z. 183 (1983), 311–341. MR 0706391, 10.1007/BF01176474
Reference: [2] J. Cea: Optimisation: Théorie et Algorithmes.Dunod, Paris, 1971. Zbl 0211.17402, MR 0298892
Reference: [3] J. Crank, R. S. Gupta: A moving boundary problem arising from the diffusion of oxygen in absorbing tissue.J.  Inst. Math. Appl. 10 (1972), 19–23. MR 0347105
Reference: [4] R. Donat, A.  Marquina and V.  Martínez: Shooting methods for one-dimensional diffusion-absorption problems.SIAM J.  Numer. Anal. 31 (1994), 572–589. MR 1276717, 10.1137/0731031
Reference: [5] G. Duvaut, J.-L. Lions: Les inéquations en mécanique et en physique.Dunod, Paris, 1972. MR 0464857
Reference: [6] J.  Ekeland, R.  Temam: Convex Analysis and Variational Problems.North-Holland, Amsterdam-Oxford, 1976.
Reference: [7] R. M. Furzeland: Analysis and computer packages for Stefan problems.Internal report, Oxford University Computing Laboratory (1979).
Reference: [8] R. Glowinsky: Numerical Methods for Nonlinear Variational Problems.Springer-Verlag, New York, 1984. MR 0737005
Reference: [9] A. Handlovičová, J.  Kačur and M.  Kačurová: Solution of nonlinear diffusion problems by linear approximation schemes.SIAM J. Numer. Anal. 30 (1993), 1703–1722. MR 1249039, 10.1137/0730087
Reference: [10] U. Hornung: A parabolic-elliptic variational inequality.Manuscripta Math. 39 (1982), 155–172. Zbl 0502.35055, MR 0675536, 10.1007/BF01165783
Reference: [11] W. Jäger, J. Kačur: Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes.RAIRO Modél. Math. Anal. Numér. 29 (1995), 605–627. MR 1352864, 10.1051/m2an/1995290506051
Reference: [12] J. Kačur: Solution to strongly nonlinear parabolic problems by a linear approximation scheme.IMA J. Numer. Anal. 19 (1999), 119–145. MR 1670689, 10.1093/imanum/19.1.119
.

Files

Files Size Format View
AplMat_46-2001-6_2.pdf 433.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo