Previous |  Up |  Next

Article

Title: Computing the differential of an unfolded contact diffeomorphism (English)
Author: Böhmer, Klaus
Author: Janovská, Drahoslava
Author: Janovský, Vladimír
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 1
Year: 2003
Pages: 3-30
Summary lang: English
.
Category: math
.
Summary: Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism $\Phi $ linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential $D\Phi (0)$ of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of $D\Phi (0)$. Singularity classes containing bifurcation points with $\mathop {\mathrm codim}\le 3$, $\mathop {\mathrm corank}=1$ are considered. (English)
Keyword: bifurcation points
Keyword: imperfect bifurcation diagrams
Keyword: qualitative analysis
MSC: 34A34
MSC: 35B32
MSC: 37C05
MSC: 47J15
MSC: 58K20
MSC: 65L99
MSC: 65P30
idZBL: Zbl 1099.34007
idMR: MR1954501
DOI: 10.1023/A:1022950819918
.
Date available: 2009-09-22T18:12:00Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134514
.
Reference: [1] K. Böhmer: On a numerical Lyapunov-Schmidt method for operator equations.Computing 53 (1993), 237–269. MR 1253405
Reference: [2] K.  Böhmer, D.  Janovská and V.  Janovský: Computer aided analysis of the imperfect bifurcation diagrams.East-West J. Numer. Math. (1998), 207–222. MR 1652813
Reference: [3] K. Böhmer, D. Janovská and V. Janovský: On the numerical analysis of the imperfect bifurcation.SIAM J. Numer. Anal. 40 (2002), 416–430. MR 1921663, 10.1137/S0036142900369283
Reference: [4] S. N. Chow, J.  Hale: Methods of Bifurcation Theory.Springer Verlag, New York, 1982. MR 0660633
Reference: [5] M. Golubitsky, D.  Schaeffer: A theory for imperfect bifurcation via singularity theory.Commun. Pure Appl. Math. 32 (1979), 21–98. MR 0508917, 10.1002/cpa.3160320103
Reference: [6] M. Golubitsky, D.  Schaeffer: Singularities and Groups in Bifurcation Theory, Vol. 1.Springer Verlag, New York, 1985. MR 0771477
Reference: [7] W. Govaerts: Numerical Methods for Bifurcations of Dynamical Equilibria.SIAM, Philadelphia, 2000. Zbl 0935.37054, MR 1736704
Reference: [8] V. Janovský, P.  Plecháč: Computer aided analysis of imperfect bifurcation diagrams I. Simple bifurcation point and isola formation centre.SIAM J.  Num. Anal. 21 (1992), 498-512. MR 1154278
.

Files

Files Size Format View
AplMat_48-2003-1_2.pdf 437.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo