Previous |  Up |  Next

Article

Title: Attractors for general operators (English)
Author: Miranville, Alain
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 1
Year: 2003
Pages: 31-47
Summary lang: English
.
Category: math
.
Summary: In this article we introduce the notion of a minimal attractor for families of operators that do not necessarily form semigroups. We then obtain some results on the existence of the minimal attractor. We also consider the nonautonomous case. As an application, we obtain the existence of the minimal attractor for models of Cahn-Hilliard equations in deformable elastic continua. (English)
Keyword: global attractor
Keyword: minimal attractor
Keyword: exponential attractor
Keyword: weakly coupled system
MSC: 35B41
MSC: 37L30
idZBL: Zbl 1099.37060
idMR: MR1954502
DOI: 10.1023/A:1022902903988
.
Date available: 2009-09-22T18:12:06Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134515
.
Reference: [1] A.  Babin, S.  Chow: Uniform long-time behavior of solutions of parabolic equations depending on slow time.J.  Differential Equations 150 (1998), 264–316. MR 1658609, 10.1006/jdeq.1998.3450
Reference: [2] A.  Babin, B.  Nicolaenko: Exponential attractors of reaction-diffusion systems in an unbounded domain.J.  Dynam. Differential Equations 7 (1995), 567–590. MR 1362671, 10.1007/BF02218725
Reference: [3] A.  V.  Babin, M. I.  Vishik: Attractors of Evolution Equations.North-Holland, Amsterdam, 1992. MR 1156492
Reference: [4] J. W.  Cahn: On spinodal decomposition.Acta Metall. 9 (1961), 795–801. 10.1016/0001-6160(61)90182-1
Reference: [5] J. W.  Cahn, J. E.  Hilliard: Free energy of a nonuniform system I. Interfacial free energy.J.  Chem. Phys. 2 (1958), 258–267. 10.1063/1.1744102
Reference: [6] M.  Carrive, A.  Miranville and A.  Piétrus: The Cahn-Hilliard equation for deformable elastic continua.Adv. Math. Sci. Appl. 10 (2000), 530–569. MR 1807441
Reference: [7] M.  Carrive, A.  Miranville, A.  Piétrus and J. M.  Rakotoson: The Cahn-Hilliard equation for an isotropic deformable continuum.Appl. Math. Lett. 12 (1999), 23–28. MR 1748727, 10.1016/S0893-9659(98)00143-8
Reference: [8] M.  Carrive, A.  Miranville, A.  Piétrus and J. M.  Rakotoson: Weakly coupled dynamical systems and applications.Preprint No 121, Université de Poitiers. MR 1919340
Reference: [9] V. V.  Chepyzhov, M. I.  Vishik: Attractors of nonautonomous dynamical systems and their dimension.J.  Math. Pures Appl. 73 (1994), 279–333. MR 1273705
Reference: [10] A.  Eden, C.  Foiaş and V.  Kalantarov: A remark on two constructions of exponential attractors for $\alpha $-contractions.J.  Dynam. Differential Equations 10 (1998), 37–45. MR 1607533, 10.1023/A:1022636328133
Reference: [11] A.  Eden, C.  Foiaş, B.  Nicolaenko and R.  Temam: Exponential Attractors for Dissipative Evolution Equations.Masson, 1994. MR 1335230
Reference: [12] M.  Efendiev, A.  Miranville and S.  Zelik: Exponential attractors for a nonlinear reaction-diffusion system in  $R^3$.C.  R.  Acad. Sci. Paris Sér. I Math. 330 (2000), 713–718. MR 1763916, 10.1016/S0764-4442(00)00259-7
Reference: [13] M.  Efendiev, A.  Miranville and S.  Zelik: The infinite dimensional exponential attractor for a nonautonomous reaction-diffusion system.Math. Nachr (to appear).
Reference: [14] P.  Fabrie, A.  Miranville: Exponential attractors for nonautonomous first-order evolution equations.Discrete Contin. Dynam. Systems 4 (1998), 225–240. MR 1617294
Reference: [15] E.  Feireisl: Exponentially attracting finite dimensional sets for the processes generated by nonautonomous semilinear wave equations.Funkcial. Ekvac. 36 (1993), 1–10. Zbl 0823.35119, MR 1232076
Reference: [16] C.  Foiaş, G.  Sell and R.  Temam: Inertial manifolds for nonlinear evolution equations.J.  Differential Equations 73 (1988), 309–353. MR 0943945, 10.1016/0022-0396(88)90110-6
Reference: [17] C.  Galusinski: Thèse.Université Bordeaux-I, 1996.
Reference: [18] J. M.  Ghidaglia, R.  Temam: Attractors for damped nonlinear hyperbolic equations.J.  Math. Pures Appl. 66 (1987), 273–319. MR 0913856
Reference: [19] M.  Gurtin: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance.Physica D  92 (1996), 178–192. Zbl 0885.35121, MR 1387065, 10.1016/0167-2789(95)00173-5
Reference: [20] J.  Hale: Asymptotic Behavior of Dissipative Systems.Math. Surveys and Monographs, Vol. 25, AMS, Providence, 1988. Zbl 0642.58013, MR 0941371
Reference: [21] A.  Haraux: Systèmes dynamiques dissipatifs et applications.Masson, 1991. Zbl 0726.58001, MR 1084372
Reference: [22] O.  Ladyzhenskaya: Attractors for Semigroups and Evolution Equations.Cambridge University Press, Cambridge, 1991. Zbl 0755.47049, MR 1133627
Reference: [23] A.  Miranville: Exponential attractors for nonautonomous evolution equations.Appl. Math. Lett. 11 (1998), 19–22. MR 1609661, 10.1016/S0893-9659(98)00004-4
Reference: [24] A.  Miranville: Exponential attractors for a class of evolution equations by a decomposition method.C.  R. Acad. Sci. Paris Sér. I Math. 328 (1999), 145–150. Zbl 1141.35340, MR 1669003, 10.1016/S0764-4442(99)80153-0
Reference: [25] A.  Miranville: Exponential attractors for a class of evolution equations by a decomposition method. II. The nonautonomous case.C.  R. Acad. Sci. Paris Ser. I Math. 328 (1999), 907–912. MR 1689877
Reference: [26] A.  Miranville: Some generalizations of the Cahn-Hilliard equation.Asymptotic Anal. 22 (2000), 235–259. Zbl 0953.35055, MR 1753766
Reference: [27] A.  Miranville: Long time behavior of some models of Cahn-Hilliard equations in deformable continua.Nonlinear Anal. Series  B 2 (2001), 273–304. Zbl 0989.35066, MR 1835609, 10.1016/S0362-546X(00)00104-8
Reference: [28] J.  Mallet-Paret, G. R.  Sell: Inertial manifolds for reaction-diffusion equations in higher space dimensions.J.  Amer. Math. Soc.  1 (1988), 805–866. MR 0943276, 10.1090/S0894-0347-1988-0943276-7
Reference: [29] G. R.  Sell: Nonautonomous differential equations and topological dynamics, I, II.Trans. Amer. Math. Soc. 127 (1967), 241–262, 263–283.
Reference: [30] F.  Shuhong: Global attractor for general nonautonomous dynamical systems.Nonlinear World 2 (1995), 191–216. Zbl 0822.34048, MR 1376953
Reference: [31] F.  Shuhong: Finite dimensional behavior of periodic and asymptotically periodic processes.Nonlinear Anal. 28 (1997), 1785–1797. Zbl 0873.58044, MR 1432632, 10.1016/S0362-546X(95)00229-O
Reference: [32] M.  Smiley: Global attractors and approximate inertial manifolds for nonautonomous dissipative equations.Appl. Anal. 50 (1993), 217–241. Zbl 0739.34052, MR 1278326, 10.1080/00036819308840194
Reference: [33] R.  Temam: Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed.Springer-Verlag, New-York, 1997. Zbl 0871.35001, MR 1441312
.

Files

Files Size Format View
AplMat_48-2003-1_3.pdf 363.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo