Previous |  Up |  Next


nonlocal boundary condition; parameter identification; parabolic IBVP
In this paper, we consider a 2nd order semilinear parabolic initial boundary value problem (IBVP) on a bounded domain $\Omega \subset \mathbb{R}^N$, with nonstandard boundary conditions (BCs). More precisely, at some part of the boundary we impose a Neumann BC containing an unknown additive space-constant $\alpha (t)$, accompanied with a nonlocal (integral) Dirichlet side condition. We design a numerical scheme for the approximation of a weak solution to the IBVP and derive error estimates for the approximation of the solution $u$ and also of the unknown function $\alpha $.
[1] D. Andreucci, R. Gianni: Global existence and blow up in a parabolic problem with nonlocal dynamical boundary conditions. Adv. Differential Equations 1 (1996), 729–752. MR 1392003
[2] D. N.  Arnold, F. Brezzi: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985), 7–32. DOI 10.1051/m2an/1985190100071 | MR 0813687
[3] J. H.  Bramble, P. Lee: On variational formulations for the Stokes equations with nonstandard boundary conditions. RAIRO Modél. Math. Anal. Numér. 28 (1994), 903–919. DOI 10.1051/m2an/1994280709031 | MR 1309419
[4] H. De Schepper, M. Slodička: Recovery of the boundary data for a linear second order elliptic problem with a nonlocal boundary condition. ANZIAM Journal (C) 42 (2000), 518–535. DOI 10.21914/anziamj.v42i0.611 | MR 1810647
[5] A. Friedman: Partial Differential Equations. Robert E.  Krieger Publishing Company, Hungtinton, New York, 1976. MR 0454266
[6] A. Friedman: Variational Principles and Free-Boundary Problems. Wiley, New York, 1982. MR 0679313 | Zbl 0564.49002
[7] J. Kačur: Method of Rothe in Evolution Equations. Teubner Texte zur Mathematik Vol. 80. Teubner, Leipzig, 1985. MR 0834176
[8] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. MR 0227584
[9] C. V.  Pao: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, 1992. MR 1212084 | Zbl 0777.35001
[10] J. Heywood, R. Rannacher and S. Turek: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Internat. J. Numer. Methods Fluids 22 (1996), 325–352. DOI 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y | MR 1380844
[11] K. Rektorys: The Method of Discretization in Time and Partial Differential Equations. Reidel Publishing Company, Dordrecht-Boston-London, 1982. MR 0689712 | Zbl 0522.65059
[12] M. Slodička: A monotone linear approximation of a nonlinear elliptic problem with a non-standard boundary condition. In: Algoritmy 2000, A. Handlovičová, M. Komorníková, K. Mikula and D. Ševčovič (eds.), Slovak University of Technology, Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry, Bratislava, 2000, pp. 47–57.
[13] M. Slodička: Error estimates of an efficient linearization scheme for a nonlinear elliptic problem with a nonlocal boundary condition. RAIRO Modél. Math. Anal. Numér. 35 (2001), 691–711. DOI 10.1051/m2an:2001132 | MR 1862875 | Zbl 0997.65124
[14] M. Slodička and H. De Schepper: On an inverse problem of pressure recovery arising from soil venting facilities. Appl. Math. Comput. 129 (2002), 469–480. DOI 10.1016/S0096-3003(01)00057-1 | MR 1905411
[15] R. Van  Keer, L. Dupré and J. Melkebeek: Computational methods for the evaluation of the electromagnetic losses in electrical machinery. Arch. Comput. Methods Engrg. 5 (1999), 385–443. DOI 10.1007/BF02905911 | MR 1675223
[16] R. Van Keer, M. Slodička: Numerical modelling for the recovery of an unknown flux in semilinear parabolic problems with nonstandard boundary conditions. In: Proceedings European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, E. Onate, G. Bugeda and B. Suárez (eds.), Barcelona, 2000.
[17] R. Van Keer, M. Slodička: Numerical techniques for the recovery of an unknown Dirichlet data function in semilinear parabolic problems with nonstandard boundary conditions. In: Numerical Analysis and Its Applications, L. Vulkov, J. Wasniewski and P. Yalamov (eds.), Springer, 2001, pp. 467–474. MR 1938440
Partner of
EuDML logo