Previous |  Up |  Next

Article

Title: Galerkin approximations for the linear parabolic equation with the third boundary condition (English)
Author: Faragó, István
Author: Korotov, Sergey
Author: Neittaanmäki, Pekka
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 2
Year: 2003
Pages: 111-128
Summary lang: English
.
Category: math
.
Summary: We solve a linear parabolic equation in $\mathbb{R}^d$, $d \ge 1,$ with the third nonhomogeneous boundary condition using the finite element method for discretization in space, and the $\theta $-method for discretization in time. The convergence of both, the semidiscrete approximations and the fully discretized ones, is analysed. The proofs are based on a generalization of the idea of the elliptic projection. The rate of convergence is derived also for variable time step-sizes. (English)
Keyword: linear parabolic equation
Keyword: third boundary condition
Keyword: finite element method
Keyword: semidiscretization
Keyword: fully discretized scheme
Keyword: elliptic projection
MSC: 65M12
MSC: 65M15
MSC: 65M60
idZBL: Zbl 1099.65086
idMR: MR1966344
DOI: 10.1023/A:1026042110602
.
Date available: 2009-09-22T18:12:52Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134522
.
Reference: [1] G. Akrivis, V.  Dougalis: On a conservative, high-order accurate finite element scheme for the “parabolic” equation.Comput. Acoustics 1 (1989), 17–26. MR 1095058
Reference: [2] R. Bellman: Introduction to Matrix Analysis.SIAM, Philadelphia, 1997. Zbl 0872.15003, MR 1455129
Reference: [3] S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods.Springer-Verlag, New York, Inc. A, 1994. MR 1278258
Reference: [4] J. Douglas, T.  Dupont: Galerkin methods for parabolic equations.SIAM J. Numer. Anal. 7 (1970), 575–626. MR 0277126, 10.1137/0707048
Reference: [5] J. Douglas, T.  Dupont: The numerical solution of waterflooding problems in petroleum engineering by variational methods.Studies in Numerical Analysis  2, SIAM, Philadelphia, 1970. MR 0269141
Reference: [6] J. Douglas, T. Dupont, H. H.  Rachford: The application of variational methods to waterflooding problems.J. Canad. Petroleum Tech. 8 (1969), 79–85.
Reference: [7] J. Douglas, T. Dupont, M. F.  Wheeler: A quasi-projection analysis of Galerkin methods for parabolic and hyperbolic equations.Math. Comp. 32 (1978), 345–362. MR 0495012, 10.1090/S0025-5718-1978-0495012-2
Reference: [8] I. Faragó, S.  Korotov, P.  Neittaanmäki: Finite element analysis for the heat conduction equation with the third boundary condition.Annales Univ. Sci. Budapest 41 (1998), 183–195. MR 1691927
Reference: [9] G. Fix, N.  Nassif: On finite element approximation in time dependent problems.Numer. Math. 19 (1972), 127–135. MR 0311122, 10.1007/BF01402523
Reference: [10] M. Křížek, P.  Neittaanmäki: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications.Kluwer Academic Publishers, 1996. MR 1431889
Reference: [11] M. Křížek, V.  Preiningerová: Calculation of the 3D  temperature field of synchronous and of induction machines by the finite element method.Elektrotechn. obzor 80 (1991), 78–84. (Czech)
Reference: [12] D. P. Laurie: Optimal parameter choice in the $\theta $-method for parabolic equations.J.  Inst. Math. Appl. 19 (1977), 119–125. Zbl 0346.65040, MR 0440926, 10.1093/imamat/19.1.119
Reference: [13] H. S. Price, J. C. Cavendich, R. S.  Varga: Numerical methods of higher-order accuracy for diffusion-convection equations.Soc. Petroleum Engrg.  J. 8 (1968), 293–303. 10.2118/1877-PA
Reference: [14] H. S. Price, R. S. Varga: Error bounds for semi-discrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics.Numerical Solution of Field Problems in Continuum Physics, AMS, Providence, 1970, pp. 74–94. MR 0266452
Reference: [15] A. A. Samarskii: Theory of Difference Schemes.Nauka, Moscow, 1977. (Russian) Zbl 0368.65031, MR 0483271
Reference: [16] J. A. Scott, W. L.  Seward: Finite difference method for parabolic problems with nonsmooth initial data.Report of Oxford Univ. Comp. Lab. 86/22 (1987).
Reference: [17] G. Strang, G.  Fix: An Analysis of the Finite Element Method.Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973. MR 0443377
Reference: [18] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems.Springer, Berlin, 1997. MR 1479170
Reference: [19] R. S. Varga: Functional Analysis and Approximation Theory in Numerical Analysis.SIAM, Philadelphia, 1971. Zbl 0226.65064, MR 0310504
Reference: [20] M. F. Wheeler: A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations.SIAM J.  Numer. Anal. 10 (1973), 723–759. MR 0351124, 10.1137/0710062
.

Files

Files Size Format View
AplMat_48-2003-2_3.pdf 375.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo