Title:
|
Fully discrete error estimation by the method of lines for a nonlinear parabolic problem (English) |
Author:
|
Vejchodský, Tomáš |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
48 |
Issue:
|
2 |
Year:
|
2003 |
Pages:
|
129-151 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A posteriori error estimates for a nonlinear parabolic problem are introduced. A fully discrete scheme is studied. The space discretization is based on a concept of hierarchical finite element basis functions. The time discretization is done using singly implicit Runge-Kutta method (SIRK). The convergence of the effectivity index is proven. (English) |
Keyword:
|
a posteriori error estimates |
Keyword:
|
finite elements |
Keyword:
|
nonlinear parabolic problems |
Keyword:
|
effectivity index |
Keyword:
|
singly implicit Runge-Kutta methods (SIRK) |
MSC:
|
65L06 |
MSC:
|
65M15 |
MSC:
|
65M20 |
MSC:
|
65M60 |
idZBL:
|
Zbl 1099.65091 |
idMR:
|
MR1966345 |
DOI:
|
10.1023/A:1026094127440 |
. |
Date available:
|
2009-09-22T18:12:59Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134523 |
. |
Reference:
|
[1] A. Adjerid, J. E. Flaherty and Y. J. Wang: A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems.Numer. Math. 65 (1993), 1–21. MR 1217436, 10.1007/BF01385737 |
Reference:
|
[2] J. C. Butcher: A transformed implicit Runge-Kutta method.J. Assoc. Comput. Mach. 26 (1979), 731–738. Zbl 0439.65057, MR 0545546, 10.1145/322154.322163 |
Reference:
|
[3] K. Burrage: A special family of Runge-Kutta methods for solving stiff differential equations.BIT 18 (1978), 22–41. Zbl 0384.65034, MR 0483458, 10.1007/BF01947741 |
Reference:
|
[4] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174 |
Reference:
|
[5] S. Fučík, A. Kufner: Nonlinear Differential Equations.Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1980. MR 0558764 |
Reference:
|
[6] H. Gajevski, K. Gröger and K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie-Verlag, Berlin, 1974. MR 0636412 |
Reference:
|
[7] I. Hlaváček, M. Křížek and J. Malý: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type.J. Math. Anal. Appl. 184 (1994), 168–189. MR 1275952, 10.1006/jmaa.1994.1192 |
Reference:
|
[8] S. Larsson, V. Thomée and N. Y. Zhang: Interpolation of coefficients and transformation of the dependent variable in the finite element methods for the nonlinear heat equation.Math. Methods Appl. Sci. 11 (1989), 105–124. MR 0973559, 10.1002/mma.1670110108 |
Reference:
|
[9] P. K. Moore: A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension.SIAM J. Numer. Anal. 31 (1994), 149–169. Zbl 0798.65089, MR 1259970, 10.1137/0731008 |
Reference:
|
[10] P. K. Moore, J. E. Flaherty: High-order adaptive solution of parabolic equations I. Singly implicit Runge-Kutta methods and error estimation.Rensselaer Polytechnic Institute Report 91-12, Troy, NY, Department of Computer Science, Rensselaer Polytechnic Institute, 1991. |
Reference:
|
[11] P. K. Moore, J. E. Flaherty: High-order adaptive finite element-singly implicit Runge-Kutta methods for parabolic differential equations.BIT 33 (1993), 309–331. MR 1326022, 10.1007/BF01989753 |
Reference:
|
[12] T. Roubíček: Nonlinear differential equations and inequalities.Mathematical Institute of Charles University, Prague, in preparation. |
Reference:
|
[13] K. Segeth: A posteriori error estimation with the finite element method of lines for a nonlinear parabolic equation in one space dimension.Numer. Math. 33 (1999), 455–475. Zbl 0936.65113, MR 1715561, 10.1007/s002110050459 |
Reference:
|
[14] B. Szabó, I. Babuška: Finite Element Analysis.John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1991. MR 1164869 |
Reference:
|
[15] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems.Springer, Berlin, 1997. MR 1479170 |
. |