Previous |  Up |  Next

Article

Title: Fully discrete error estimation by the method of lines for a nonlinear parabolic problem (English)
Author: Vejchodský, Tomáš
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 2
Year: 2003
Pages: 129-151
Summary lang: English
.
Category: math
.
Summary: A posteriori error estimates for a nonlinear parabolic problem are introduced. A fully discrete scheme is studied. The space discretization is based on a concept of hierarchical finite element basis functions. The time discretization is done using singly implicit Runge-Kutta method (SIRK). The convergence of the effectivity index is proven. (English)
Keyword: a posteriori error estimates
Keyword: finite elements
Keyword: nonlinear parabolic problems
Keyword: effectivity index
Keyword: singly implicit Runge-Kutta methods (SIRK)
MSC: 65L06
MSC: 65M15
MSC: 65M20
MSC: 65M60
idZBL: Zbl 1099.65091
idMR: MR1966345
DOI: 10.1023/A:1026094127440
.
Date available: 2009-09-22T18:12:59Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134523
.
Reference: [1] A.  Adjerid, J. E.  Flaherty and Y. J.  Wang: A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems.Numer. Math. 65 (1993), 1–21. MR 1217436, 10.1007/BF01385737
Reference: [2] J. C.  Butcher: A transformed implicit Runge-Kutta method.J. Assoc. Comput. Mach. 26 (1979), 731–738. Zbl 0439.65057, MR 0545546, 10.1145/322154.322163
Reference: [3] K.  Burrage: A special family of Runge-Kutta methods for solving stiff differential equations.BIT 18 (1978), 22–41. Zbl 0384.65034, MR 0483458, 10.1007/BF01947741
Reference: [4] P. G.  Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [5] S.  Fučík, A.  Kufner: Nonlinear Differential Equations.Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1980. MR 0558764
Reference: [6] H. Gajevski, K.  Gröger and K.  Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie-Verlag, Berlin, 1974. MR 0636412
Reference: [7] I. Hlaváček, M. Křížek and J.  Malý: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type.J. Math. Anal. Appl. 184 (1994), 168–189. MR 1275952, 10.1006/jmaa.1994.1192
Reference: [8] S. Larsson, V. Thomée and N. Y.  Zhang: Interpolation of coefficients and transformation of the dependent variable in the finite element methods for the nonlinear heat equation.Math. Methods Appl. Sci. 11 (1989), 105–124. MR 0973559, 10.1002/mma.1670110108
Reference: [9] P. K.  Moore: A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension.SIAM J. Numer. Anal. 31 (1994), 149–169. Zbl 0798.65089, MR 1259970, 10.1137/0731008
Reference: [10] P. K.  Moore, J. E.  Flaherty: High-order adaptive solution of parabolic equations  I. Singly implicit Runge-Kutta methods and error estimation.Rensselaer Polytechnic Institute Report 91-12, Troy, NY, Department of Computer Science, Rensselaer Polytechnic Institute, 1991.
Reference: [11] P. K.  Moore, J. E.  Flaherty: High-order adaptive finite element-singly implicit Runge-Kutta methods for parabolic differential equations.BIT 33 (1993), 309–331. MR 1326022, 10.1007/BF01989753
Reference: [12] T. Roubíček: Nonlinear differential equations and inequalities.Mathematical Institute of Charles University, Prague, in preparation.
Reference: [13] K.  Segeth: A posteriori error estimation with the finite element method of lines for a nonlinear parabolic equation in one space dimension.Numer. Math. 33 (1999), 455–475. Zbl 0936.65113, MR 1715561, 10.1007/s002110050459
Reference: [14] B.  Szabó, I.  Babuška: Finite Element Analysis.John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1991. MR 1164869
Reference: [15] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems.Springer, Berlin, 1997. MR 1479170
.

Files

Files Size Format View
AplMat_48-2003-2_4.pdf 395.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo