[1] G.  Allasia, C.  Giordano, J.  Pečarić: 
Hadamard-type inequalities for $(2r)$-convex functions with applications. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 133 (1999), 187–200. 
MR 1799453 
[2] H.  Alzer: 
A note on Hadamard’s inequalities. C. R. Math. Rep. Acad. Sci. Canada 11 (1989), 255–258. 
MR 1030364 | 
Zbl 0707.26012 
[4] A. G.  Azpeitia: 
Convex functions and the Hadamard inequality. Rev. Colombiana Mat. 28 (1994), 7–12. 
MR 1304041 | 
Zbl 0832.26015 
[5] D.  Barbu, S. S.  Dragomir and C.  Buşe: 
A probabilistic argument for the convergence of some sequences associated to Hadamard’s inequality. Studia Univ. Babeş-Bolyai Math. 38 (1993), 29–33. 
MR 1863680 
[6] C.  Buşe, S. S.  Dragomir and D.  Barbu: 
The convergence of some sequences connected to Hadamard’s inequality. Demostratio Math. 29 (1996), 53–59. 
DOI 10.1515/dema-1996-0109 | 
MR 1398727 
[7] S. S.  Dragomir: 
A mapping in connection to Hadamard’s inequalities. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 128 (1991), 17–20. 
MR 1188722 | 
Zbl 0747.26015 
[8] S. S.  Dragomir: 
A refinement of Hadamard’s inequality for isotonic linear functionals. Tamkang J.  Math. 24 (1993), 101–106. 
MR 1215250 | 
Zbl 0799.26016 
[9] S. S.  Dragomir: 
On Hadamard’s inequalities for convex functions. Mat. Balkanica (N. S.) 6 (1992), 215–222. 
MR 1183627 | 
Zbl 0834.26010 
[10] S. S.  Dragomir: 
On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications. Math. Inequal. Appl. 3 (2000), 177–187. 
MR 1749295 | 
Zbl 0951.26010 
[12] S. S.  Dragomir: 
Some integral inequalities for differentiable convex functions. Makedon. Akad. Nauk Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 13 (1992), 13–17. 
MR 1262519 | 
Zbl 0770.26009 
[13] S. S.  Dragomir: 
Some remarks on Hadamard’s inequalities for convex functions. Extracta Math. 9 (1994), 88–94. 
MR 1325288 | 
Zbl 0984.26012 
[16] S. S.  Dragomir, C.  Buşe: 
Refinements of Hadamard’s inequality for multiple integrals. Utilitas Math. 47 (1995), 193–198. 
MR 1330902 
[17] S. S.  Dragomir, Y. J.  Cho and S. S.  Kim: 
Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. J.  Math. Anal. Appl. 245 (2000), 489–501. 
DOI 10.1006/jmaa.2000.6769 | 
MR 1758551 
[18] S. S.  Dragomir, S.  Fitzpatrick: 
Hadamard inequality for $s$-convex functions in the first sense and applications. Demonstratio Math. 31 (1998), 633–642. 
MR 1658478 
[19] S. S.  Dragomir, S.  Fitzpatrick: 
The Hadamard’s inequality for $s$-convex functions in the second sense. Demonstratio Math. 32 (1999), 687–696. 
MR 1740330 
[20] S. S. Dragomir, N. M.  Ionescu: 
On some inequalities for convex-dominated functions. Anal. Numér. Théor. Approx. 19 (1990), 21–27. 
MR 1159773 
[21] S. S.  Dragomir, D. S.  Milośević and J.  Sándor: On some refinements of Hadamard’s inequalities and applications. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 4 (1993), 3–10.
[22] S. S.  Dragomir, B.  Mond: 
On Hadamard’s inequality for a class of functions of Godunova and Levin. Indian J.  Math. 39 (1997), 1–9. 
MR 1476079 
[24] S. S.  Dragomir, C. E. M. Pearce, and J. E.  Pečarić: 
On Jessen’s related inequalities for isotonic sublinear functionals. Acta Sci. Math. 61 (1995), 373–382. 
MR 1377372 
[25] S. S. Dragomir, J. E. Pečarić, and L. E. Persson: 
Some inequalities of Hadamard type. Soochow J.  Math. 21 (1995), 335–341. 
MR 1348130 
[26] S. S. Dragomir, J. E.  Pečarić, and J.  Sándor: 
A note on the Jensen-Hadamard inequality. Anal. Numér. Théor. Approx. 19 (1990), 29–34. 
MR 1159774 
[27] S. S.  Dragomir, G. H.  Toader: 
Some inequalities for $m$-convex functions. Studia Univ. Babeş-Bolyai Math. 38 (1993), 21–28. 
MR 1863679 
[28] A. M.  Fink: 
A best possible Hadamard inequality. Math. Inequal. Appl. 1 (1998), 223–230. 
MR 1613456 | 
Zbl 0907.26009 
[29] A. M.  Fink: 
Toward a theory of best possible inequalities. Nieuw Arch. Wisk. 12 (1994), 19–29. 
MR 1284677 | 
Zbl 0827.26018 
[30] A. M.  Fink: 
Two inequalities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 6 (1995), 48–49. 
MR 1367482 | 
Zbl 0841.26009 
[33] G. H.  Hardy, J. E.  Littlewood, and G.  Pólya: 
Inequalities. 2nd ed. Cambridge University Press, 1952. 
MR 0046395 
[34] K.-C.  Lee, K.-L.  Tseng: 
On weighted generalization of Hadamard’s inequality for $g$ functions. Tamsui Oxf. J. Math. Sci. 16 (2000), 91–104. 
MR 1772077 
[35] A.  Lupaş: 
The Jensen-Hadamard inequality for convex functions of higher order. Octogon Math. Mag. 5 (1997), 8–9. 
MR 1619472 
[36] A.  Lupaş: 
A generalization of Hadamard’s inequality for convex functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544–576 (1976), 115–121. 
MR 0444865 
[37] D.  M.  Maksimović: 
A short proof of generalized Hadamard’s inequalities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634–677 (1979), 126–128. 
MR 0579274 
[39] D. S.  Mitrinović, J. E.  Pečarić, and A. M.  Fink: 
Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht, 1993. 
MR 1220224 
[42] E.  Neuman: 
Inequalities involving multivariate convex functions. II. Proc. Amer. Math. Soc. 109 (1990), 965–974. 
MR 1009996 | 
Zbl 0699.26009 
[43] C. P.  Niculescu: A note on the dual Hermite-Hadamard inequality. The Math. Gazette  (July 2000), .
[44] C. P.  Niculescu: 
Convexity according to the geometric mean. Math. Inequal. Appl. 3 (2000), 155–167. 
MR 1749293 | 
Zbl 0952.26006 
[46] C. E. M.  Pearce, A. M.  Rubinov: 
$P$-functions, quasi-convex functions and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), 92–104. 
DOI 10.1006/jmaa.1999.6593 | 
MR 1728202 
[47] J. E.  Pečarić: 
Remarks on two interpolations of Hadamard’s inequalities. Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 13 (1992), 9–12. 
MR 1262518 
[48] J.  Pečarić, S. S.  Dragomir: 
A generalization of Hadamard’s inequality for isotonic linear functionals. Rad. Mat. 7 (1991), 103–107. 
MR 1126888 
[49] J.  Pečarić, F.  Proschan, and Y. L. Tong: 
Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston, 1992. 
MR 1162312 
[50] J.  Sándor: 
An application of the Jensen-Hadamard inequality. Nieuw Arch. Wisk. 8 (1990), 63–66. 
MR 1056662 
[51] J.  Sándor: 
On the Jensen-Hadamard inequality. Studia Univ. Babeş-Bolyai, Math. 36 (1991), 9–15. 
MR 1280888 
[52] P. M.  Vasić, I. B.  Lacković, and D. M.  Maksimović: Note on convex functions. IV. On Hadamard’s inequality for weighted arithmetic means. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678–715 (1980), 199–205.
[53] G. S Yang, M. C.  Hong: 
A note on Hadamard’s inequality. Tamkang J.  Math. 28 (1997), 33–37. 
MR 1457248 
[54] G. S. Yang, K. L.  Tseng: 
On certain integral inequalities related to Hermite-Hadamard inequalities. J.  Math. Anal. Appl. 239 (1999), 180–187. 
DOI 10.1006/jmaa.1999.6506 | 
MR 1719056