Previous |  Up |  Next

Article

Title: Wave front tracking in systems of conservation laws (English)
Author: Colombo, Rinaldo M.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 6
Year: 2004
Pages: 501-537
Summary lang: English
.
Category: math
.
Summary: This paper contains several recent results about nonlinear systems of hyperbolic conservation laws obtained through the technique of Wave Front Tracking. (English)
Keyword: conservation laws
Keyword: Wave Front Tracking
MSC: 35A35
MSC: 35B35
MSC: 35D05
MSC: 35L65
idZBL: Zbl 1099.35063
idMR: MR2099979
DOI: 10.1007/s10492-004-6430-x
.
Date available: 2009-09-22T18:19:50Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134583
.
Reference: [1] R. Abeyaratne, J. K.  Knowles: Kinetic relations and the propagation of phase boundaries in solids.Arch. Rational Mech. Anal. 114 (1991), 119–154. MR 1094433, 10.1007/BF00375400
Reference: [2] D. Amadori: Initial-boundary value problems for nonlinear systems of conservation laws.NoDEA Nonlinear Differential Equations Appl. 4 (1997), 1–42. Zbl 0868.35069, MR 1433310, 10.1007/PL00001406
Reference: [3] D. Amadori, R. M.  Colombo: Continuous dependence for $2\times 2$ conservation laws with boundary.J.  Differential Equations 138 (1997), 229–266. MR 1462268, 10.1006/jdeq.1997.3274
Reference: [4] D. Amadori, R. M.  Colombo: Viscosity solutions and standard Riemann semigroup for conservation laws with boundary.Rend. Sem. Mat. Univ. Padova 99 (1998), 219–245. MR 1636611
Reference: [5] D. Amadori, L. Gosse, and G. Guerra: Global BV  entropy solutions and uniqueness for hyperbolic systems of balance laws.Arch. Rational Mech. Anal. 162 (2002), 327–366. MR 1904499, 10.1007/s002050200198
Reference: [6] D. Amadori, G. Guerra: Uniqueness and continuous dependence for systems of balance laws with dissipation.Nonlinear Anal. 49A (2002), 987–1014. MR 1895539
Reference: [7] F. Ancona, G. M.  Coclite: On the attainable set for Temple class systems with boundary controls.Preprint (2002). MR 2179483
Reference: [8] F. Ancona, A. Marson: On the attainable set for scalar nonlinear conservation laws with boundary control.SIAM  J.  Control Optim. 36 (1998), 290–312. MR 1616586, 10.1137/S0363012996304407
Reference: [9] F. Ancona, A. Marson: $L^1$-stability for $n\times n$ non genuinely nonlinear conservation laws.Preprint (2000).
Reference: [10] F. Ancona, A. Marson: A wavefront tracking algorithm for $N\times N$  nongenuinely nonlinear conservation laws.J.  Differential Equations 177 (2001), 454–493. MR 1876651, 10.1006/jdeq.2000.4012
Reference: [11] F. Asakura: Kinetic condition and the Gibbs function.Taiwanese J. Math. 4 (2000), 105–117. Zbl 0951.35078, MR 1757985, 10.11650/twjm/1500407200
Reference: [12] P. Baiti, A. Bressan: The semigroup generated by a Temple class system with large data.Differential Integral Equations 10 (1997), 401–418. MR 1744853
Reference: [13] P. Baiti, H. K.  Jenssen: On the front-tracking algorithm.J.  Math. Anal. Appl. 217 (1998), 395–404. MR 1492096, 10.1006/jmaa.1997.5715
Reference: [14] P. Baiti and H. K.  Jenssen: Blowup in  $L^\infty $ for a class of genuinely nonlinear hyperbolic systems of conservation laws.Discrete Contin. Dynam. Systems 7 (2001), 837–853. MR 1849664, 10.3934/dcds.2001.7.837
Reference: [15] S. Bianchini: The semigroup generated by a Temple class system with non-convex flux function.Differential Integral Equations 13 (2000), 1529–1550. Zbl 1043.35110, MR 1787080
Reference: [16] S. Bianchini, A. Bressan: Vanishing viscosity solutions of nonlinear hyperbolic systems.Annals of Mathematics (to appear). MR 2150387
Reference: [17] S. Bianchini, R. M.  Colombo: On the stability of the standard Riemann semigroup.Proc. Amer. Math. Soc. 130 (2002), 1961–1973 (electronic). MR 1896028
Reference: [18] A. Bressan: Global solutions of systems of conservation laws by wave-front tracking.J.  Math. Anal. Appl. 170 (1992), 414–432. Zbl 0779.35067, MR 1188562, 10.1016/0022-247X(92)90027-B
Reference: [19] A. Bressan: The unique limit of the Glimm scheme.Arch. Rational Mech. Anal. 130 (1995), 205–230. Zbl 0835.35088, MR 1337114, 10.1007/BF00392027
Reference: [20] A. Bressan: The semigroup approach to systems of conservation laws. Fourth Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 1995).Math. Contemp. 10 (1996), 21–74. MR 1425453
Reference: [21] A. Bressan: Uniqueness and stability of weak solutions to systems of conservation laws.In: Proceedings of the 9th  International Conference on Waves and Stability in Continuous Media (Bari, 1997), Suppl. Rend. Circ. Mat. Palermo (2), Ser. 57, 1998, pp. 69–78. Zbl 0941.35048, MR 1708496
Reference: [22] A. Bressan: Hyperbolic Systems of Conservation Laws.Oxford Lecture Series in Mathematics and its Applications, Vol. 20, Oxford University Press, Oxford, 2000. Zbl 1157.35421, MR 1816648
Reference: [23] A. Bressan: The front tracking method for systems of conservation laws.In: Handbook of Partial Differential Equations, C. M.  Dafermos, and E. Feireisl (eds.), Elsevier. To appear. MR 2103697
Reference: [24] A. Bressan, G. M.  Coclite: On the boundary control of systems of conservation laws.SIAM J.  Control Optim. 41 (2002), 607–622 (electronic). MR 1920513, 10.1137/S0363012901392529
Reference: [25] A. Bressan, R. M.  Colombo: The semigroup generated by $2\times 2$ conservation laws.Arch. Rational Mech. Anal. 133 (1995), 1–75. MR 1367356, 10.1007/BF00375350
Reference: [26] A. Bressan, R. M.  Colombo: Unique solutions of $2\times 2$ conservation laws with large data.Indiana Univ. Math.  J. 44 (1995), 677–725. MR 1375345
Reference: [27] A. Bressan, R. M.  Colombo: Decay of positive waves in nonlinear systems of conservation laws.Ann. Scuola Norm. Sup. Pisa Cl.  Sci. IV 26 (1998), 133–160. MR 1632980
Reference: [28] A. Bressan, G. Crasta, and B. Piccoli: Well-posedness of the Cauchy problem for $n\times n$ systems of conservation laws.Mem. Amer. Math. Soc. 146(694), 2000. MR 1686652
Reference: [29] A. Bressan, P. Goatin: Oleinik type estimates and uniqueness for $n\times n$ conservation laws.J.  Differential Equations 156 (1999), 26–49. MR 1701818, 10.1006/jdeq.1998.3606
Reference: [30] A. Bressan, G. Guerra: Shift-differentiability of the flow generated by a conservation law.Discrete Contin. Dynam. Systems 3 (1997), 35–58. MR 1422538, 10.3934/dcds.1997.3.35
Reference: [31] A. Bressan, P. G.  LeFloch: Uniqueness of weak solutions to systems of conservation laws.Arch. Rational Mech. Anal. 140 (1997), 301–317. MR 1489317, 10.1007/s002050050068
Reference: [32] A. Bressan, P. G.  LeFloch: Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws.Indiana Univ. Math.  J. 48 (1999), 43–84. MR 1722193
Reference: [33] A. Bressan, M. Lewicka: Shift differentials of maps in BV  spaces.In: Nonlinear Theory of Generalized Function (Vienna, 1997), Vol.  401 of Chapman & Hall/CRC Res. Notes Math, 401, Chapman & Hall/CRC, Boca Raton, 1999, pp. 47–61. MR 1699858
Reference: [34] A. Bressan, T.-P.  Liu, and T. Yang: $L^1$  stability estimates for $n\times n$ conservation laws.Arch. Rational Mech. Anal. 149 (1999), 1–22. MR 1723032, 10.1007/s002050050165
Reference: [35] R. M.  Colombo: Hyperbolic phase transitions in traffic flow.SIAM J.  Appl. Math. 63 (2002), 708–721. Zbl 1037.35043, MR 1951956, 10.1137/S0036139901393184
Reference: [36] R. M.  Colombo, A. Corli: Continuous dependence in conservation laws with phase transitions.SIAM J. Math. Anal. 31 (1999), 34–62. MR 1720130, 10.1137/S0036141097331871
Reference: [37] R. M.  Colombo, A. Corli: Sonic hyperbolic phase transitions and Chapman-Jouguet detonations.J.  Differential Equations 184 (2002), 321–347. MR 1929881, 10.1006/jdeq.2001.4131
Reference: [38] R. M.  Colombo, A. Corli: On $2\times 2$ conservation laws with large data.NoDEA Nonlinear Differential Equations Appl. 10 (2003), 255–268. MR 1994810, 10.1007/s00030-003-1006-0
Reference: [39] R. M.  Colombo, A. Corli: A semilinear structure on semigroups in a metric space.Semigroup Forum (to appear). MR 2050900
Reference: [40] R. M.  Colombo, A. Groli: Minimising stop & go waves to optimise traffic flow.Appl. Math. Letters (to appear). MR 2064183
Reference: [41] R. M.  Colombo, A. Groli: On the initial boundary value problem for Temple systems.Nonlinear Anal. 56 (2004), 567–589. MR 2035327, 10.1016/j.na.2003.09.022
Reference: [42] R. M.  Colombo, A. Groli: On the optimization of a conservation law.Calc. Var. Partial Differential Equations 19 (2004), 269–280. MR 2033062, 10.1007/s00526-003-0201-5
Reference: [43] R. M.  Colombo, F. S.  Priuli: Characterization of Riemann solvers for the two phase $p$-system.Comm. Partial Differential Equations 28 (2003), 1371–1389. MR 1998941, 10.1081/PDE-120024372
Reference: [44] R. M.  Colombo, N. H.  Risebro: Continuous dependence in the large for some equations of gas dynamics.Comm. Partial Differential Equations 23 (1998), 1693–1718. MR 1641709, 10.1080/03605309808821397
Reference: [45] G. Crasta, B. Piccoli: Viscosity solutions and uniqueness for systems of inhomogeneous balance laws.Discrete Contin. Dynam. Systems 3 (1997), 477–502. MR 1465122
Reference: [46] C. M.  Dafermos: Polygonal approximations of solutions of the initial value problem for a conservation law.J.  Math. Anal. Appl. 38 (1972), 33–41. Zbl 0233.35014, MR 0303068, 10.1016/0022-247X(72)90114-X
Reference: [47] C. M.  Dafermos: Generalized characteristics in hyperbolic systems of conservation laws.Arch. Rational Mech. Anal. 107 (1989), 127–155. Zbl 0714.35046, MR 0996908, 10.1007/BF00286497
Reference: [48] C. M.  Dafermos: Hyperbolic Conservation Laws in Continuum Physics.Springer-Verlag, Berlin, first edition, 2000. Zbl 0940.35002, MR 1763936
Reference: [49] C. M.  Dafermos, X. Geng: Generalised characteristics in hyperbolic systems of conservation laws with special coupling.Proc. Roy. Soc. Edinburgh Sect.  A 116 (1990), 245–278. MR 1084734
Reference: [50] C. M.  Dafermos, X. Geng: Generalized characteristics, uniqueness and regularity of solutions in a hyperbolic system of conservation laws.Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 231–269. MR 1127926, 10.1016/S0294-1449(16)30263-3
Reference: [51] F. Dubois, P. LeFloch: Boundary conditions for nonlinear hyperbolic systems of conservation laws.J.  Differential Equations 71 (1988), 93–122. MR 0922200, 10.1016/0022-0396(88)90040-X
Reference: [52] J. Glimm: Solutions in the large for nonlinear hyperbolic systems of equations.Comm. Pure Appl. Math. 18 (1965), 697–715. Zbl 0141.28902, MR 0194770, 10.1002/cpa.3160180408
Reference: [53] H. Holden, N. H.  Risebro: Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences Vol.  152.Springer-Verlag, Berlin, 2002. MR 1912206
Reference: [54] H. K.  Jenssen: Blowup for systems of conservation laws.SIAM J.  Math. Anal. 31 (2000), 894–908 (electronic). Zbl 0969.35091, MR 1752421, 10.1137/S0036141099352339
Reference: [55] P. D.  Lax: Hyperbolic systems of conservation laws  II.Comm. Pure Appl. Math. 10 (1957), 537–566. Zbl 0081.08803, MR 0093653, 10.1002/cpa.3160100406
Reference: [56] P. G.  LeFloch: Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical shock waves Lectures in Mathematics ETH Zürich.Birkhäuser-Verlag, Basel, 2002. MR 1927887
Reference: [57] M. Lewicka: $L^1$  stability of patterns of non-interacting large shock waves.Indiana Univ. Math.  J. 49 (2000), 1515–1537. MR 1836539
Reference: [58] M. Lewicka, K. Trivisa: On the $L^1$  well-posedness of systems of conservation laws near solutions containing two large shocks.J.  Differential Equations 179 (2002), 133–177. MR 1883740, 10.1006/jdeq.2000.4000
Reference: [59] T.-P.  Liu: The deterministic version of the Glimm scheme.Comm. Math. Phys. 57 (1977), 135–148. Zbl 0376.35042, MR 0470508, 10.1007/BF01625772
Reference: [60] T.-P.  Liu, T. Yang: $L^1$  stability for $2\times 2$ systems of hyperbolic conservation laws.J.  Amer. Math. Soc. 12 (1999), 729–774. MR 1646841, 10.1090/S0894-0347-99-00292-1
Reference: [61] T.-P.  Liu, T. Yang: A new entropy functional for a scalar conservation law.Comm. Pure Appl. Math. 52 (1999), 1427–1442. MR 1702712, 10.1002/(SICI)1097-0312(199911)52:11<1427::AID-CPA2>3.0.CO;2-R
Reference: [62] T.-P.  Liu, T. Yang: Well-posedness theory for hyperbolic conservation laws.Comm. Pure Appl. Math. 52 (1999), 1553–1586. MR 1711037, 10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S
Reference: [63] Y. Lu: Hyperbolic Conservation Laws and the Compensated Compactness Method. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol.  128.Chapman & Hall/CRC, Boca Raton, 2003. MR 1936672
Reference: [64] N. H.  Risebro: A front-tracking alternative to the random choice method.Proc. Amer. Math. Soc. 117 (1993), 1125–1139. Zbl 0799.35153, MR 1120511, 10.1090/S0002-9939-1993-1120511-X
Reference: [65] S. Schochet: The essence of Glimm’s scheme.In: Nonlinear Evolutionary Partial Differential Equations (Beijing,  1993), AMS/IP Stud. Adv. Math., Vol. 3, Amer. Math. Soc., Providence, 1997, pp. 355–362. Zbl 0882.35009, MR 1468507
Reference: [66] D. Serre: Solutions à variations bornées pour certains systèmes hyperboliques de lois de conservation.J.  Differential Equations 68 (1987), 137–168. Zbl 0627.35062, MR 0892021, 10.1016/0022-0396(87)90189-6
Reference: [67] D. Serre: Systems of Conservation Laws, 1 & 2.Cambridge University Press, Cambridge, 1999, 2000, translated from the 1996  French original by I. N.  Sneddon. MR 1707279
Reference: [68] M. Slemrod: Admissibility criteria for propagating phase boundaries in a van der Waals fluid.Arch. Rational Mech. Anal. 81 (1983), 301–315. Zbl 0505.76082, MR 0683192, 10.1007/BF00250857
Reference: [69] B. Temple: Systems of conservation laws with invariant submanifolds.Trans. Amer. Math. Soc. 280 (1983), 781–795. Zbl 0559.35046, MR 0716850, 10.1090/S0002-9947-1983-0716850-2
Reference: [70] B. Temple: $L^1$-contractive metrics for systems of conservation laws.Trans. Amer. Math. Soc. 288 (1985), 471–480. MR 0776388
Reference: [71] Z. H.  Teng, A. J.  Chorin, and T. P.  Liu: Riemann problems for reacting gas, with applications to transition.SIAM J.  Appl. Math. 42 (1982), 964–981. MR 0673521, 10.1137/0142069
Reference: [72] K. Trivisa: A priori estimates in hyperbolic systems of conservation laws via generalized characteristics.Comm. Partial Differential Equations 22 (1997), 235–267. Zbl 0881.35018, MR 1434145
Reference: [72] L. Truskinovsky: About the “normal growth” approximation in the dynamical theory of phase transitions.Contin. Mech. Thermodyn. 6 (1994), 185–208. Zbl 0877.73006, MR 1285921, 10.1007/BF01135253
.

Files

Files Size Format View
AplMat_49-2004-6_2.pdf 4.167Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo