Title:
|
Wave front tracking in systems of conservation laws (English) |
Author:
|
Colombo, Rinaldo M. |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
49 |
Issue:
|
6 |
Year:
|
2004 |
Pages:
|
501-537 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper contains several recent results about nonlinear systems of hyperbolic conservation laws obtained through the technique of Wave Front Tracking. (English) |
Keyword:
|
conservation laws |
Keyword:
|
Wave Front Tracking |
MSC:
|
35A35 |
MSC:
|
35B35 |
MSC:
|
35D05 |
MSC:
|
35L65 |
idZBL:
|
Zbl 1099.35063 |
idMR:
|
MR2099979 |
DOI:
|
10.1007/s10492-004-6430-x |
. |
Date available:
|
2009-09-22T18:19:50Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134583 |
. |
Reference:
|
[1] R. Abeyaratne, J. K. Knowles: Kinetic relations and the propagation of phase boundaries in solids.Arch. Rational Mech. Anal. 114 (1991), 119–154. MR 1094433, 10.1007/BF00375400 |
Reference:
|
[2] D. Amadori: Initial-boundary value problems for nonlinear systems of conservation laws.NoDEA Nonlinear Differential Equations Appl. 4 (1997), 1–42. Zbl 0868.35069, MR 1433310, 10.1007/PL00001406 |
Reference:
|
[3] D. Amadori, R. M. Colombo: Continuous dependence for $2\times 2$ conservation laws with boundary.J. Differential Equations 138 (1997), 229–266. MR 1462268, 10.1006/jdeq.1997.3274 |
Reference:
|
[4] D. Amadori, R. M. Colombo: Viscosity solutions and standard Riemann semigroup for conservation laws with boundary.Rend. Sem. Mat. Univ. Padova 99 (1998), 219–245. MR 1636611 |
Reference:
|
[5] D. Amadori, L. Gosse, and G. Guerra: Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws.Arch. Rational Mech. Anal. 162 (2002), 327–366. MR 1904499, 10.1007/s002050200198 |
Reference:
|
[6] D. Amadori, G. Guerra: Uniqueness and continuous dependence for systems of balance laws with dissipation.Nonlinear Anal. 49A (2002), 987–1014. MR 1895539 |
Reference:
|
[7] F. Ancona, G. M. Coclite: On the attainable set for Temple class systems with boundary controls.Preprint (2002). MR 2179483 |
Reference:
|
[8] F. Ancona, A. Marson: On the attainable set for scalar nonlinear conservation laws with boundary control.SIAM J. Control Optim. 36 (1998), 290–312. MR 1616586, 10.1137/S0363012996304407 |
Reference:
|
[9] F. Ancona, A. Marson: $L^1$-stability for $n\times n$ non genuinely nonlinear conservation laws.Preprint (2000). |
Reference:
|
[10] F. Ancona, A. Marson: A wavefront tracking algorithm for $N\times N$ nongenuinely nonlinear conservation laws.J. Differential Equations 177 (2001), 454–493. MR 1876651, 10.1006/jdeq.2000.4012 |
Reference:
|
[11] F. Asakura: Kinetic condition and the Gibbs function.Taiwanese J. Math. 4 (2000), 105–117. Zbl 0951.35078, MR 1757985, 10.11650/twjm/1500407200 |
Reference:
|
[12] P. Baiti, A. Bressan: The semigroup generated by a Temple class system with large data.Differential Integral Equations 10 (1997), 401–418. MR 1744853 |
Reference:
|
[13] P. Baiti, H. K. Jenssen: On the front-tracking algorithm.J. Math. Anal. Appl. 217 (1998), 395–404. MR 1492096, 10.1006/jmaa.1997.5715 |
Reference:
|
[14] P. Baiti and H. K. Jenssen: Blowup in $L^\infty $ for a class of genuinely nonlinear hyperbolic systems of conservation laws.Discrete Contin. Dynam. Systems 7 (2001), 837–853. MR 1849664, 10.3934/dcds.2001.7.837 |
Reference:
|
[15] S. Bianchini: The semigroup generated by a Temple class system with non-convex flux function.Differential Integral Equations 13 (2000), 1529–1550. Zbl 1043.35110, MR 1787080 |
Reference:
|
[16] S. Bianchini, A. Bressan: Vanishing viscosity solutions of nonlinear hyperbolic systems.Annals of Mathematics (to appear). MR 2150387 |
Reference:
|
[17] S. Bianchini, R. M. Colombo: On the stability of the standard Riemann semigroup.Proc. Amer. Math. Soc. 130 (2002), 1961–1973 (electronic). MR 1896028 |
Reference:
|
[18] A. Bressan: Global solutions of systems of conservation laws by wave-front tracking.J. Math. Anal. Appl. 170 (1992), 414–432. Zbl 0779.35067, MR 1188562, 10.1016/0022-247X(92)90027-B |
Reference:
|
[19] A. Bressan: The unique limit of the Glimm scheme.Arch. Rational Mech. Anal. 130 (1995), 205–230. Zbl 0835.35088, MR 1337114, 10.1007/BF00392027 |
Reference:
|
[20] A. Bressan: The semigroup approach to systems of conservation laws. Fourth Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 1995).Math. Contemp. 10 (1996), 21–74. MR 1425453 |
Reference:
|
[21] A. Bressan: Uniqueness and stability of weak solutions to systems of conservation laws.In: Proceedings of the 9th International Conference on Waves and Stability in Continuous Media (Bari, 1997), Suppl. Rend. Circ. Mat. Palermo (2), Ser. 57, 1998, pp. 69–78. Zbl 0941.35048, MR 1708496 |
Reference:
|
[22] A. Bressan: Hyperbolic Systems of Conservation Laws.Oxford Lecture Series in Mathematics and its Applications, Vol. 20, Oxford University Press, Oxford, 2000. Zbl 1157.35421, MR 1816648 |
Reference:
|
[23] A. Bressan: The front tracking method for systems of conservation laws.In: Handbook of Partial Differential Equations, C. M. Dafermos, and E. Feireisl (eds.), Elsevier. To appear. MR 2103697 |
Reference:
|
[24] A. Bressan, G. M. Coclite: On the boundary control of systems of conservation laws.SIAM J. Control Optim. 41 (2002), 607–622 (electronic). MR 1920513, 10.1137/S0363012901392529 |
Reference:
|
[25] A. Bressan, R. M. Colombo: The semigroup generated by $2\times 2$ conservation laws.Arch. Rational Mech. Anal. 133 (1995), 1–75. MR 1367356, 10.1007/BF00375350 |
Reference:
|
[26] A. Bressan, R. M. Colombo: Unique solutions of $2\times 2$ conservation laws with large data.Indiana Univ. Math. J. 44 (1995), 677–725. MR 1375345 |
Reference:
|
[27] A. Bressan, R. M. Colombo: Decay of positive waves in nonlinear systems of conservation laws.Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV 26 (1998), 133–160. MR 1632980 |
Reference:
|
[28] A. Bressan, G. Crasta, and B. Piccoli: Well-posedness of the Cauchy problem for $n\times n$ systems of conservation laws.Mem. Amer. Math. Soc. 146(694), 2000. MR 1686652 |
Reference:
|
[29] A. Bressan, P. Goatin: Oleinik type estimates and uniqueness for $n\times n$ conservation laws.J. Differential Equations 156 (1999), 26–49. MR 1701818, 10.1006/jdeq.1998.3606 |
Reference:
|
[30] A. Bressan, G. Guerra: Shift-differentiability of the flow generated by a conservation law.Discrete Contin. Dynam. Systems 3 (1997), 35–58. MR 1422538, 10.3934/dcds.1997.3.35 |
Reference:
|
[31] A. Bressan, P. G. LeFloch: Uniqueness of weak solutions to systems of conservation laws.Arch. Rational Mech. Anal. 140 (1997), 301–317. MR 1489317, 10.1007/s002050050068 |
Reference:
|
[32] A. Bressan, P. G. LeFloch: Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws.Indiana Univ. Math. J. 48 (1999), 43–84. MR 1722193 |
Reference:
|
[33] A. Bressan, M. Lewicka: Shift differentials of maps in BV spaces.In: Nonlinear Theory of Generalized Function (Vienna, 1997), Vol. 401 of Chapman & Hall/CRC Res. Notes Math, 401, Chapman & Hall/CRC, Boca Raton, 1999, pp. 47–61. MR 1699858 |
Reference:
|
[34] A. Bressan, T.-P. Liu, and T. Yang: $L^1$ stability estimates for $n\times n$ conservation laws.Arch. Rational Mech. Anal. 149 (1999), 1–22. MR 1723032, 10.1007/s002050050165 |
Reference:
|
[35] R. M. Colombo: Hyperbolic phase transitions in traffic flow.SIAM J. Appl. Math. 63 (2002), 708–721. Zbl 1037.35043, MR 1951956, 10.1137/S0036139901393184 |
Reference:
|
[36] R. M. Colombo, A. Corli: Continuous dependence in conservation laws with phase transitions.SIAM J. Math. Anal. 31 (1999), 34–62. MR 1720130, 10.1137/S0036141097331871 |
Reference:
|
[37] R. M. Colombo, A. Corli: Sonic hyperbolic phase transitions and Chapman-Jouguet detonations.J. Differential Equations 184 (2002), 321–347. MR 1929881, 10.1006/jdeq.2001.4131 |
Reference:
|
[38] R. M. Colombo, A. Corli: On $2\times 2$ conservation laws with large data.NoDEA Nonlinear Differential Equations Appl. 10 (2003), 255–268. MR 1994810, 10.1007/s00030-003-1006-0 |
Reference:
|
[39] R. M. Colombo, A. Corli: A semilinear structure on semigroups in a metric space.Semigroup Forum (to appear). MR 2050900 |
Reference:
|
[40] R. M. Colombo, A. Groli: Minimising stop & go waves to optimise traffic flow.Appl. Math. Letters (to appear). MR 2064183 |
Reference:
|
[41] R. M. Colombo, A. Groli: On the initial boundary value problem for Temple systems.Nonlinear Anal. 56 (2004), 567–589. MR 2035327, 10.1016/j.na.2003.09.022 |
Reference:
|
[42] R. M. Colombo, A. Groli: On the optimization of a conservation law.Calc. Var. Partial Differential Equations 19 (2004), 269–280. MR 2033062, 10.1007/s00526-003-0201-5 |
Reference:
|
[43] R. M. Colombo, F. S. Priuli: Characterization of Riemann solvers for the two phase $p$-system.Comm. Partial Differential Equations 28 (2003), 1371–1389. MR 1998941, 10.1081/PDE-120024372 |
Reference:
|
[44] R. M. Colombo, N. H. Risebro: Continuous dependence in the large for some equations of gas dynamics.Comm. Partial Differential Equations 23 (1998), 1693–1718. MR 1641709, 10.1080/03605309808821397 |
Reference:
|
[45] G. Crasta, B. Piccoli: Viscosity solutions and uniqueness for systems of inhomogeneous balance laws.Discrete Contin. Dynam. Systems 3 (1997), 477–502. MR 1465122 |
Reference:
|
[46] C. M. Dafermos: Polygonal approximations of solutions of the initial value problem for a conservation law.J. Math. Anal. Appl. 38 (1972), 33–41. Zbl 0233.35014, MR 0303068, 10.1016/0022-247X(72)90114-X |
Reference:
|
[47] C. M. Dafermos: Generalized characteristics in hyperbolic systems of conservation laws.Arch. Rational Mech. Anal. 107 (1989), 127–155. Zbl 0714.35046, MR 0996908, 10.1007/BF00286497 |
Reference:
|
[48] C. M. Dafermos: Hyperbolic Conservation Laws in Continuum Physics.Springer-Verlag, Berlin, first edition, 2000. Zbl 0940.35002, MR 1763936 |
Reference:
|
[49] C. M. Dafermos, X. Geng: Generalised characteristics in hyperbolic systems of conservation laws with special coupling.Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), 245–278. MR 1084734 |
Reference:
|
[50] C. M. Dafermos, X. Geng: Generalized characteristics, uniqueness and regularity of solutions in a hyperbolic system of conservation laws.Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 231–269. MR 1127926, 10.1016/S0294-1449(16)30263-3 |
Reference:
|
[51] F. Dubois, P. LeFloch: Boundary conditions for nonlinear hyperbolic systems of conservation laws.J. Differential Equations 71 (1988), 93–122. MR 0922200, 10.1016/0022-0396(88)90040-X |
Reference:
|
[52] J. Glimm: Solutions in the large for nonlinear hyperbolic systems of equations.Comm. Pure Appl. Math. 18 (1965), 697–715. Zbl 0141.28902, MR 0194770, 10.1002/cpa.3160180408 |
Reference:
|
[53] H. Holden, N. H. Risebro: Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences Vol. 152.Springer-Verlag, Berlin, 2002. MR 1912206 |
Reference:
|
[54] H. K. Jenssen: Blowup for systems of conservation laws.SIAM J. Math. Anal. 31 (2000), 894–908 (electronic). Zbl 0969.35091, MR 1752421, 10.1137/S0036141099352339 |
Reference:
|
[55] P. D. Lax: Hyperbolic systems of conservation laws II.Comm. Pure Appl. Math. 10 (1957), 537–566. Zbl 0081.08803, MR 0093653, 10.1002/cpa.3160100406 |
Reference:
|
[56] P. G. LeFloch: Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical shock waves Lectures in Mathematics ETH Zürich.Birkhäuser-Verlag, Basel, 2002. MR 1927887 |
Reference:
|
[57] M. Lewicka: $L^1$ stability of patterns of non-interacting large shock waves.Indiana Univ. Math. J. 49 (2000), 1515–1537. MR 1836539 |
Reference:
|
[58] M. Lewicka, K. Trivisa: On the $L^1$ well-posedness of systems of conservation laws near solutions containing two large shocks.J. Differential Equations 179 (2002), 133–177. MR 1883740, 10.1006/jdeq.2000.4000 |
Reference:
|
[59] T.-P. Liu: The deterministic version of the Glimm scheme.Comm. Math. Phys. 57 (1977), 135–148. Zbl 0376.35042, MR 0470508, 10.1007/BF01625772 |
Reference:
|
[60] T.-P. Liu, T. Yang: $L^1$ stability for $2\times 2$ systems of hyperbolic conservation laws.J. Amer. Math. Soc. 12 (1999), 729–774. MR 1646841, 10.1090/S0894-0347-99-00292-1 |
Reference:
|
[61] T.-P. Liu, T. Yang: A new entropy functional for a scalar conservation law.Comm. Pure Appl. Math. 52 (1999), 1427–1442. MR 1702712, 10.1002/(SICI)1097-0312(199911)52:11<1427::AID-CPA2>3.0.CO;2-R |
Reference:
|
[62] T.-P. Liu, T. Yang: Well-posedness theory for hyperbolic conservation laws.Comm. Pure Appl. Math. 52 (1999), 1553–1586. MR 1711037, 10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S |
Reference:
|
[63] Y. Lu: Hyperbolic Conservation Laws and the Compensated Compactness Method. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 128.Chapman & Hall/CRC, Boca Raton, 2003. MR 1936672 |
Reference:
|
[64] N. H. Risebro: A front-tracking alternative to the random choice method.Proc. Amer. Math. Soc. 117 (1993), 1125–1139. Zbl 0799.35153, MR 1120511, 10.1090/S0002-9939-1993-1120511-X |
Reference:
|
[65] S. Schochet: The essence of Glimm’s scheme.In: Nonlinear Evolutionary Partial Differential Equations (Beijing, 1993), AMS/IP Stud. Adv. Math., Vol. 3, Amer. Math. Soc., Providence, 1997, pp. 355–362. Zbl 0882.35009, MR 1468507 |
Reference:
|
[66] D. Serre: Solutions à variations bornées pour certains systèmes hyperboliques de lois de conservation.J. Differential Equations 68 (1987), 137–168. Zbl 0627.35062, MR 0892021, 10.1016/0022-0396(87)90189-6 |
Reference:
|
[67] D. Serre: Systems of Conservation Laws, 1 & 2.Cambridge University Press, Cambridge, 1999, 2000, translated from the 1996 French original by I. N. Sneddon. MR 1707279 |
Reference:
|
[68] M. Slemrod: Admissibility criteria for propagating phase boundaries in a van der Waals fluid.Arch. Rational Mech. Anal. 81 (1983), 301–315. Zbl 0505.76082, MR 0683192, 10.1007/BF00250857 |
Reference:
|
[69] B. Temple: Systems of conservation laws with invariant submanifolds.Trans. Amer. Math. Soc. 280 (1983), 781–795. Zbl 0559.35046, MR 0716850, 10.1090/S0002-9947-1983-0716850-2 |
Reference:
|
[70] B. Temple: $L^1$-contractive metrics for systems of conservation laws.Trans. Amer. Math. Soc. 288 (1985), 471–480. MR 0776388 |
Reference:
|
[71] Z. H. Teng, A. J. Chorin, and T. P. Liu: Riemann problems for reacting gas, with applications to transition.SIAM J. Appl. Math. 42 (1982), 964–981. MR 0673521, 10.1137/0142069 |
Reference:
|
[72] K. Trivisa: A priori estimates in hyperbolic systems of conservation laws via generalized characteristics.Comm. Partial Differential Equations 22 (1997), 235–267. Zbl 0881.35018, MR 1434145 |
Reference:
|
[72] L. Truskinovsky: About the “normal growth” approximation in the dynamical theory of phase transitions.Contin. Mech. Thermodyn. 6 (1994), 185–208. Zbl 0877.73006, MR 1285921, 10.1007/BF01135253 |
. |