Previous |  Up |  Next

Article

Title: On valuation of derivative securities: A Lie group analytical approach (English)
Author: Yam, Phillip S. C.
Author: Yang, Hailiang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 1
Year: 2006
Pages: 49-61
Summary lang: English
.
Category: math
.
Summary: This paper proposes a Lie group analytical approach to tackle the problem of pricing derivative securities. By exploiting the infinitesimal symmetries of the Boundary Value Problem (BVP) satisfied by the price of a derivative security, our method provides an effective algorithm for obtaining its explicit solution. (English)
Keyword: Lie groups
Keyword: infinitesimal transformations
Keyword: invariants
Keyword: pricing of derivative securities
Keyword: Bessel equations
Keyword: Bessel functions
MSC: 49L25
MSC: 60G40
MSC: 91B24
idZBL: Zbl 1164.60359
idMR: MR2197322
DOI: 10.1007/s10492-006-0004-z
.
Date available: 2009-09-22T18:24:45Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134629
.
Reference: [1] F. Black, M.  Scholes: The pricing of options and corporate liabilities.J.  Polit. Econ. 81 (1973), 637–654. 10.1086/260062
Reference: [2] J. C. Cox, S. A. Ross: The valuation of options for alternative stochastic processes.J.  Fin. Econ. 3 (1976), 145–166. 10.1016/0304-405X(76)90023-4
Reference: [3] D. Duffie, J.  Ma, and J.  Yong: Black’s consol rate conjecture.Ann. Appl. Prob. 5 (1995), 356–382. MR 1336873, 10.1214/aoap/1177004768
Reference: [4] N.  El Karoui, S. Peng, and M. C.  Quenez: Backward stochastic differential equations in finance.Math. Finance 7 (1997), 1–71. MR 1434407, 10.1111/1467-9965.00022
Reference: [5] W.  Feller: Two singular diffusion problems.Ann. Math. 54 (1951), 173–182. Zbl 0045.04901, MR 0054814, 10.2307/1969318
Reference: [6] H.  Geman, M.  Yor: Bessel processes, Asian options, and perpetuities.Mathematical Finance 3 (1993), 349–375. 10.1111/j.1467-9965.1993.tb00092.x
Reference: [7] H. U. Gerber, E. S. W. Shiu: Option pricing by Esscher transforms.Transactions of the Society of Actuaries XLVI (1994), 99–191.
Reference: [8] N. Kunitomo, M.  Ikeda: Pricing options with curved boundaries.Math. Finance 2 (1992), 275–298. 10.1111/j.1467-9965.1992.tb00033.x
Reference: [9] C. F. Lo,P. H.  Yuen, and C. H.  Hui: Constant elasticity of variance option pricing model with time-dependent parameters.Int. J. Theor. Appl. Finance 3 (2000), 661–674. MR 1795483, 10.1142/S0219024900000814
Reference: [10] C. F. Lo, C. H. Hui: Valuation of financial derivatives with time-dependent parameters: Lie algebraic approach.Quant. Finance 1 (2001), 73–78. MR 1810017, 10.1080/713665552
Reference: [11] P. J. Olver: Applications of Lie Groups to Differential Equations.Springer-Verlag, New York, 1986. Zbl 0588.22001, MR 0836734
Reference: [12] L. V. Ovsyannikov: Group Analysis of Differential Equations.Academic Press, New York, 1982. Zbl 0485.58002, MR 0668703
Reference: [13] G. H. Watson: A Treatise on the Theory of Bessel Functions.Cambridge University Press, Cambridge, 1922.
.

Files

Files Size Format View
AplMat_51-2006-1_4.pdf 331.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo