Title:
|
On valuation of derivative securities: A Lie group analytical approach (English) |
Author:
|
Yam, Phillip S. C. |
Author:
|
Yang, Hailiang |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
51 |
Issue:
|
1 |
Year:
|
2006 |
Pages:
|
49-61 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper proposes a Lie group analytical approach to tackle the problem of pricing derivative securities. By exploiting the infinitesimal symmetries of the Boundary Value Problem (BVP) satisfied by the price of a derivative security, our method provides an effective algorithm for obtaining its explicit solution. (English) |
Keyword:
|
Lie groups |
Keyword:
|
infinitesimal transformations |
Keyword:
|
invariants |
Keyword:
|
pricing of derivative securities |
Keyword:
|
Bessel equations |
Keyword:
|
Bessel functions |
MSC:
|
49L25 |
MSC:
|
60G40 |
MSC:
|
91B24 |
idZBL:
|
Zbl 1164.60359 |
idMR:
|
MR2197322 |
DOI:
|
10.1007/s10492-006-0004-z |
. |
Date available:
|
2009-09-22T18:24:45Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134629 |
. |
Reference:
|
[1] F. Black, M. Scholes: The pricing of options and corporate liabilities.J. Polit. Econ. 81 (1973), 637–654. 10.1086/260062 |
Reference:
|
[2] J. C. Cox, S. A. Ross: The valuation of options for alternative stochastic processes.J. Fin. Econ. 3 (1976), 145–166. 10.1016/0304-405X(76)90023-4 |
Reference:
|
[3] D. Duffie, J. Ma, and J. Yong: Black’s consol rate conjecture.Ann. Appl. Prob. 5 (1995), 356–382. MR 1336873, 10.1214/aoap/1177004768 |
Reference:
|
[4] N. El Karoui, S. Peng, and M. C. Quenez: Backward stochastic differential equations in finance.Math. Finance 7 (1997), 1–71. MR 1434407, 10.1111/1467-9965.00022 |
Reference:
|
[5] W. Feller: Two singular diffusion problems.Ann. Math. 54 (1951), 173–182. Zbl 0045.04901, MR 0054814, 10.2307/1969318 |
Reference:
|
[6] H. Geman, M. Yor: Bessel processes, Asian options, and perpetuities.Mathematical Finance 3 (1993), 349–375. 10.1111/j.1467-9965.1993.tb00092.x |
Reference:
|
[7] H. U. Gerber, E. S. W. Shiu: Option pricing by Esscher transforms.Transactions of the Society of Actuaries XLVI (1994), 99–191. |
Reference:
|
[8] N. Kunitomo, M. Ikeda: Pricing options with curved boundaries.Math. Finance 2 (1992), 275–298. 10.1111/j.1467-9965.1992.tb00033.x |
Reference:
|
[9] C. F. Lo,P. H. Yuen, and C. H. Hui: Constant elasticity of variance option pricing model with time-dependent parameters.Int. J. Theor. Appl. Finance 3 (2000), 661–674. MR 1795483, 10.1142/S0219024900000814 |
Reference:
|
[10] C. F. Lo, C. H. Hui: Valuation of financial derivatives with time-dependent parameters: Lie algebraic approach.Quant. Finance 1 (2001), 73–78. MR 1810017, 10.1080/713665552 |
Reference:
|
[11] P. J. Olver: Applications of Lie Groups to Differential Equations.Springer-Verlag, New York, 1986. Zbl 0588.22001, MR 0836734 |
Reference:
|
[12] L. V. Ovsyannikov: Group Analysis of Differential Equations.Academic Press, New York, 1982. Zbl 0485.58002, MR 0668703 |
Reference:
|
[13] G. H. Watson: A Treatise on the Theory of Bessel Functions.Cambridge University Press, Cambridge, 1922. |
. |