Previous |  Up |  Next

Article

Title: Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems (English)
Author: Feistauer, Miloslav
Author: Hájek, Jaroslav
Author: Švadlenka, Karel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 3
Year: 2007
Pages: 197-233
Summary lang: English
.
Category: math
.
Summary: The paper presents the theory of the discontinuous Galerkin finite element method for the space-time discretization of a linear nonstationary convection-diffusion-reaction initial-boundary value problem. The discontinuous Galerkin method is applied separately in space and time using, in general, different nonconforming space grids on different time levels and different polynomial degrees $p$ and $q$ in space and time discretization, respectively. In the space discretization the nonsymmetric interior and boundary penalty approximation of diffusion terms is used. The paper is concerned with the proof of error estimates in “$L^2(L^2)$”- and “$ \sqrt{ \varepsilon } L^2(H^1) $”-norms, where $\varepsilon \ge 0$ is the diffusion coefficient. Using special interpolation theorems for the space as well as time discretization, we find that under some assumptions on the shape regularity of the meshes and a certain regularity of the exact solution, the errors are of order $ O(h^p+\tau ^q)$. The estimates hold true even in the hyperbolic case when $ \varepsilon = 0$. (English)
Keyword: nonstationary convection-diffusion-reaction equation
Keyword: space-time discontinuous Galerkin finite element discretization
Keyword: nonsymmetric treatment of diffusion terms
Keyword: error estimates
MSC: 35K15
MSC: 65M12
MSC: 65M15
MSC: 65M60
idZBL: Zbl 1164.65469
idMR: MR2316153
DOI: 10.1007/s10492-007-0011-8
.
Date available: 2009-09-22T18:29:25Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134672
.
Reference: [1] D. N. Arnold: An interior penalty finite element method with discontinuous elements.SIAM J. Numer. Anal. 19 (1982), 742–760. Zbl 0482.65060, MR 0664882, 10.1137/0719052
Reference: [2] D. N.  Arnold, F.  Brezzi, B.  Cockburn, and D.  Marini: Discontinuos Galerkin methods for elliptic problems.In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng.  11, B. Cockburn et al. (eds.), Springer-Verlag, Berlin, 2000, pp. 89–101. MR 1842165
Reference: [3] D. N.  Arnold, F.  Brezzi, B.  Cockburn, and D.  Marini: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2002), 1749–1779. MR 1885715, 10.1137/S0036142901384162
Reference: [4] I.  Babuška, C. E.  Baumann, and J. T.  Oden: A discontinuous $hp$  finite element method for diffusion problems, 1-D analysis.Comput. Math. Appl. 37 (1999), 103–122. MR 1688050, 10.1016/S0898-1221(99)00117-0
Reference: [5] F.  Bassi, S.  Rebay: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations.J.  Comput. Phys. 131 (1997), 267–279. MR 1433934, 10.1006/jcph.1996.5572
Reference: [6] F.  Bassi, S.  Rebay: High-order accurate discontinuous finite element solution of the 2D  Euler equations.J.  Comput. Phys. 138 (1997), 251–285. MR 1607481, 10.1006/jcph.1997.5454
Reference: [7] C. E. Baumann, J. T. Oden: A discontinuous $hp$  finite element method for the Euler and Navier-Stokes equations.Int. J.  Numer. Methods Fluids 31 (1999), 79–95. MR 1714511, 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C
Reference: [8] P. G.  Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [9] B.  Cockburn: Discontinuous Galerkin methods for convection-dominated problems.In: High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Eng.  9, T. J. Barth, H. Deconinck (eds.), Springer-Verlag, Berlin, 1999, pp. 69–224. Zbl 0937.76049, MR 1712278
Reference: [10] : Discontinuous Galerkin Methods. Lect. Notes Comput. Sci. Eng.  11.B.  Cockburn, G. E.  Karniadakis, and C.-W.  Shu (eds.), Springer-Verlag, Berlin, 2000.
Reference: [11] B.  Cockburn, C. W.  Shu: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II.  General framework.Math. Comp. 52 (1989), 411–435. MR 0983311
Reference: [12] T. A.  Davis, I. S.  Duff: A combined unifrontal/multifrontal method for unsymmetric sparse matrices.ACM Trans. Math. Softw. 25 (1999), 1–20. MR 1697461, 10.1145/305658.287640
Reference: [13] V. Dolejší, M. Feistauer: On the discontinuous Galerkin method for the numerical solution of compressible high-speed flow.In: Numerical Mathematics and Advanced Applications, ENUMATH  2001, F. Brezzi, A. Buffa, S. Corsaro, and A. Murli (eds.), Springer-Verlag, Berlin, 2003, pp. 65–83. MR 2360708
Reference: [14] V.  Dolejší, M.  Feistauer: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems.Numer. Funct. Anal. Optimization 26 (2005), 349–383. MR 2153838, 10.1081/NFA-200067298
Reference: [15] V.  Dolejší, M.  Feistauer: A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow.J.  Comput. Phys. 198 (2004), 727–746. MR 2062915, 10.1016/j.jcp.2004.01.023
Reference: [16] V.  Dolejší, M.  Feistauer, and J.  Hozman: Analysis of semi-implicit  DGFEM for nonlinear convection-diffusion problems on nonconforming meshes.Preprint No.  MATH-knm-2005/1, Charles University Prague, School of Mathematics, 2005. MR 2325393
Reference: [17] V.  Dolejší, M.  Feistauer, and V.  Kučera: On a semi-implicit discontinuous Galerkin FEM for the nonstationary compressible Euler equations.In: Hyperbolic Problems: Theory, Numerics and Applications.  I. Proc. 10th International Conference Osaka, September  2004, F.  Asakura, H.  Aiso, S.  Kawashima, A.  Matsumura, S.  Nishibata, and K.  Nishihara (eds.), Yokohama Publishers, Yokohama, 2006, pp. 391–398. MR 2667262
Reference: [18] V.  Dolejší, M.  Feistauer, and C.  Schwab: A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems.Calcolo 39 (2002), 1–40. MR 1901200, 10.1007/s100920200000
Reference: [19] V.  Dolejší, M.  Feistauer, and C.  Schwab: On some aspects of the discontinuous Galerkin finite element method for conservation laws.Math. Comput. Simul. 61 (2003), 333–346. MR 1984135, 10.1016/S0378-4754(02)00087-3
Reference: [20] V.  Dolejší, M.  Feistauer, and V.  Sobotíková: A discontinuous Galerkin method for nonlinear convection-diffusion problems.Comput. Methods Appl. Mech. Eng. 194 (2005), 2709–2733. MR 2136396, 10.1016/j.cma.2004.07.017
Reference: [21] J.  Douglas, T.  Dupont: Interior penalty procedures for elliptic and parabolic Galerkin methods.In: Computing methods in applied sciences (Second Internat. Sympos., Versailles,  1975). Lect. Notes Phys., Vol.  58, Springer-Verlag, Berlin, 1976, pp. 207–216. MR 0440955
Reference: [22] K.  Eriksson, D.  Estep, P.  Hansbo, and C. Johnson: Computational Differential Equations.Cambridge University Press, Cambridge, 1996. MR 1414897
Reference: [23] K.  Eriksson, C.  Johnson, and V.  Thomée: Time discretization of parabolic problems by the discontinuous Galerkin method.RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 611–643. MR 0826227, 10.1051/m2an/1985190406111
Reference: [24] M.  Feistauer, V.  Kučera: Solution of compressible flow with all Mach numbers.In: European Conference on Computational Fluid Dynamics, ECCOMAS  CFD  2006, P.  Wesseling, E.  Onate, and J.  Périaux (eds.), TU  Delft, The Netherlands, 2006, published electronically.
Reference: [25] M.  Feistauer, K.  Švadlenka: Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems.J. Numer. Math. 12 (2004), 97–117. MR 2062581
Reference: [26] R.  Hartmann, P.  Houston: Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations.Technical Report  2001-42 (SFB  359), IWR Heidelberg. MR 1947780
Reference: [27] F.  Hecht, O.  Pironneau, and A. Le  Hyaric: www.freefem.org/ff++..
Reference: [28] P.  Houston, C.  Schwab, and E.  Süli: Discontinuous $hp$-finite element methods for advection-diffusion-reaction problems.SIAM  J.  Numer. Anal. 39 (2002), 2133–2163. MR 1897953, 10.1137/S0036142900374111
Reference: [29] J.  Jaffre, C.  Johnson, and A.  Szepessy: Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws.Math. Models Methods Appl. Sci. 5 (1995), 367–386. MR 1330139, 10.1142/S021820259500022X
Reference: [30] C.  Johnson, J.  Pitkäranta: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation.Math. Comp. 46 (1986), 1–26. MR 0815828, 10.1090/S0025-5718-1986-0815828-4
Reference: [31] A.  Kufner, O.  John, and S.  Fučík: Function Spaces.Academia, Praha, 1977. MR 0482102
Reference: [32] P.  Le Saint, P.-A.  Raviart: On a finite element method for solving the neutron transport equation.In: Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor (ed.), Academic Press, , 1974, pp. 89–145. MR 0658142
Reference: [33] J.-L.  Lions: Quelques méthodes de résolution des problémes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [34] : www.netlib.org/minpack.University of Chicago, Operator of Argonne Laboratory (1999).
Reference: [35] J. T.  Oden, I.  Babuška, and C. E.  Baumann: A discontinuous $hp$  finite element method for diffusion problems.J.  Comput. Phys. 146 (1998), 491–519. MR 1654911, 10.1006/jcph.1998.6032
Reference: [36] W. H.  Reed, T. R.  Hill: Triangular mesh methods for the neutron transport equation.Technical Report LA-UR-73-479. Los Alamos Scientific Laboratory, 1973.
Reference: [37] K.  Rektorys: The Method of Discretization in Time and Partial Differential Equations.Reidel, Dordrecht, 1982. Zbl 0522.65059, MR 0689712
Reference: [38] B. Rivière, M. F. Wheeler: A discontinuous Galerkin method applied to nonlinear parabolic equations.In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes in Comput. Sci. Eng.  11, B. Cockburn et al. (eds.), Springer-Verlag, Berlin, 2000, pp. 231–244. MR 1842177
Reference: [39] B. Rivière, M. F. Wheeler: Non-conforming methods for transport with nonlinear reaction.Contemp. Math. 295 (2002), 421–432. MR 1911967, 10.1090/conm/295/05032
Reference: [40] B. Rivière, M. F. Wheeler, and V. Girault: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems.  I.Comput. Geosci. 3 (1999), 337–360. MR 1750076, 10.1023/A:1011591328604
Reference: [41] B. Rivière, M. F. Wheeler, and V.  Girault: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems.SIAM J.  Numer. Anal. 39 (2001), 902–931. MR 1860450, 10.1137/S003614290037174X
Reference: [42] H.-G.  Roos, M.  Stynes, and L.  Tobiska: Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems.Springer-Verlag, Berlin, 1996. MR 1477665
Reference: [43] D.  Schötzau: $hp$-DGFEM for Parabolic Evolution Problems.Applications to Diffusion and Viscous Incompressible Fluid Flow. PhD.  Dissertation ETH No.  13041, ETH, Zürich, 1999.
Reference: [44] D.  Schötzau, C.  Schwab: An  $hp$ a priori error analysis of the discontinuous Galerkin time-stepping for initial value problems.Calcolo 37 (2000), 207–232. MR 1812787, 10.1007/s100920070002
Reference: [45] S.  Sun, M. F.  Wheeler: $L^2(H^1)$-norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems.J.  Sci. Comput. 22–23 (2005), 501–530. MR 2142207, 10.1007/s10915-004-4148-2
Reference: [46] S.  Sun, M. F.  Wheeler: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media.SIAM J.  Numer. Anal. 43 (2005), 195–219. MR 2177141, 10.1137/S003614290241708X
Reference: [47] S.  Sun, M. F.  Wheeler: Discontinuous Galerkin methods for coupled flow and reactive transport problems.Appl. Numer. Math. 52 (2005), 273–298. MR 2116915, 10.1016/j.apnum.2004.08.035
Reference: [48] J. J. W.  van der Vegt, H.  van der Ven: Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flow. I.  General formulation.J.  Comput. Phys. 182 (2002), 546–585. MR 1941852, 10.1006/jcph.2002.7185
Reference: [49] T.  Werder, K.  Gerdes, D.  Schötzau, and C.  Schwab: $hp$-discontinuous Galerkin time stepping for parabolic problems.Comput. Methods Appl. Mech. Eng. 190 (2001), 6685–6708. MR 1863353, 10.1016/S0045-7825(01)00258-4
Reference: [50] M. F.  Wheeler: An elliptic collocation-finite element method with interior penalties.SIAM J.  Numer. Anal. 15 (1978), 152–161. Zbl 0384.65058, MR 0471383, 10.1137/0715010
.

Files

Files Size Format View
AplMat_52-2007-3_3.pdf 519.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo