Previous |  Up |  Next

Article

Title: Two-sided a posteriori error estimates for linear elliptic problems with mixed boundary conditions (English)
Author: Korotov, Sergey
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 3
Year: 2007
Pages: 235-249
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model consisting of a linear elliptic (reaction-diffusion) equation with a mixed Dirichlet/Neumann/Robin boundary condition is considered in this work. On the base of this model, we present simple technologies for straightforward constructing computable upper and lower bounds for the error, which is understood as the difference between the exact solution of the model and its approximation measured in the corresponding energy norm. The estimates obtained are completely independent of the numerical technique used to obtain approximate solutions and are “flexible” in the sense that they can be, in principle, made as close to the true error as the resources of the used computer allow. (English)
Keyword: a posteriori error estimation
Keyword: error control in energy norm
Keyword: two-sided error estimation
Keyword: differential equation of elliptic type
Keyword: mixed boundary conditions
MSC: 35J25
MSC: 65G20
MSC: 65N15
MSC: 65N30
MSC: 65N50
idZBL: Zbl 1164.65485
idMR: MR2316154
DOI: 10.1007/s10492-007-0012-7
.
Date available: 2009-09-22T18:29:32Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134673
.
Reference: [1] M.  Ainsworth, J. T.  Oden: A Posteriori Error Estimation in Finite Element Analysis.John Wiley & Sons, , 2000. MR 1885308
Reference: [2] I.  Babuška, T.  Strouboulis: The Finite Element Method and Its Reliability.Oxford University Press, New York, 2001. MR 1857191
Reference: [3] W.  Bangerth, R.  Rannacher: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich.Birkhäuser-Verlag, Basel, 2003. MR 1960405
Reference: [4] R. Becker, R. Rannacher: A feed-back approach to error control in finite element methods: Basic analysis and examples.East-West J.  Numer. Math. 4 (1996), 237–264. MR 1430239
Reference: [5] J.  Brandts, M.  Křížek: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J.  Numer. Anal. 23 (2003), 489–505. MR 1987941, 10.1093/imanum/23.3.489
Reference: [6] C.  Carstensen, S. A.  Funken: Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods.East-West J.  Numer. Math. 8 (2000), 153–175. MR 1807259
Reference: [7] Ph. G.  Ciarlet: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol.  4.North-Holland Publishing, Amsterdam-New York-Oxford, 1978. MR 0520174
Reference: [8] K.  Eriksson, D.  Estep, P.  Hansbo, C.  Johnson: Introduction to adaptive methods for differential equations.Acta Numerica, A. Israel (ed.), Cambridge University Press, Cambridge, 1995, pp. 106–158. MR 1352472
Reference: [9] I.  Faragó, J.  Karátson: Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators: Theory and Applications. Advances in Computation. Theory and Practice, Vol.  11.Nova Science Publishers, Huntigton, 2002. MR 2106499
Reference: [10] W.  Han: A Posteriori Error Analysis via Duality Theory. With Applications in Modeling and Numerical Approximations. Advances in Mechanics and Mathematics, Vol. 8.Springer-Verlag, New York, 2005. MR 2101057
Reference: [11] A.  Hannukainen, S.  Korotov: Techniques for a posteriori error estimation in terms of linear functionals for elliptic type boundary value problems.Far East J.  Appl. Math. 21 (2005), 289–304. MR 2216003
Reference: [12] A.  Hannukainen, S.  Korotov: Computational technologies for reliable control of global and local errors for linear elliptic type boundary value problems. Preprint  A494.Helsinki University of Technology (February  2006); accepted by  JNAIAM, J.  Numer. Anal. Ind. Appl. Math. in  2007. MR 2376087
Reference: [13] I.  Hlaváček, J.  Chleboun, and I.  Babuška: Uncertain Input Data Problems and the Worst Scenario Method.Elsevier, Amsterdam, 2004. MR 2285091
Reference: [14] I.  Hlaváček, M.  Křížek: On a superconvergent finite element scheme for elliptic systems  I, II, III.Apl. Mat. 32 (1987), 131–154, 200–213, 276–289. MR 0895878
Reference: [15] S.  Korotov: A posteriori error estimation for linear elliptic problems with mixed boundary conditions.Preprint  A495, Helsinki University of Techology (March 2006). MR 2219926
Reference: [16] S.  Korotov: A posteriori error estimation of goal-oriented quantities for elliptic type BVPs.J.  Comput. Appl. Math. 191 (2006), 216–227. Zbl 1089.65120, MR 2219926, 10.1016/j.cam.2005.06.038
Reference: [17] S.  Korotov, P.  Neittaanmäki, and S.  Repin: A posteriori error estimation of goal-oriented quantities by superconvergence patch recovery.J.  Numer. Math. 11 (2003), 33–59. MR 1976438, 10.1163/156939503322004882
Reference: [18] M.  Křížek, P.  Neittaanmäki: Mathematical and Numerical Modelling in Electrical Engineering. Theory and Practice. Mathematical Modelling: Theory and Applications, Vol.  1.Kluwer Academic Publishers, Dordrecht, 1996. MR 1431889
Reference: [19] C.  Lovadina, R.  Stenberg: Energy norm a posteriori error estimates for mixed finite element methods.Math. Comput. 75 (2006), 1659–1674. MR 2240629, 10.1090/S0025-5718-06-01872-2
Reference: [20] S. G.  Mikhlin: Constants in Some Inequalities of Analysis. A Wiley-Interscience Publication.John Wiley & Sons, Chichester, 1986. MR 0853915
Reference: [21] P.  Neittaanmäki, S.  Repin: Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates. Studies in Mathematics and its Applications, Vol.  33.Elsevier, Amsterdam, 2004. MR 2095603
Reference: [22] J.  Nečas: Les Méthodes Directes en Théorie des Équations Elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [23] J. T.  Oden, S.  Prudhomme: Goal-oriented error estimation and adaptivity for the finite element method.Comput. Math. Appl. 41 (2001), 735–756. MR 1822600, 10.1016/S0898-1221(00)00317-5
Reference: [24] S.  Repin: A posteriori error estimation for nonlinear variational problems by duality theory.Zap. Nauchn. Semin. S.-Peterburg, Otdel. Mat. Inst. Steklov. (POMI) 243 (1997), 201–214. Zbl 0904.65064, MR 1629741
Reference: [25] S.  Repin: Two-sided estimates of deviation from exact solutions of uniformly elliptic equations.Amer. Math. Soc. Transl. 209 (2003), 143–171. MR 2018375, 10.1090/trans2/209/06
Reference: [26] S.  Repin, M.  Frolov: A posteriori estimates for the accuracy of approximate solutions of boundary value problems for equations of elliptic type.Zh. Vychisl. Mat. Mat. Fiz. 42 (2002), 1774–1787 (in Russian). MR 1971889
Reference: [27] S.  Repin, S.  Sauter, A.  Smolianski: A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions.Computing 70 (2003), 205–233. MR 2011610, 10.1007/s00607-003-0013-7
Reference: [28] S.  Repin, S.  Sauter, A.  Smolianski: A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions.J.  Comput. Appl. Math. 164/165 (2004), 601–612. MR 2056902, 10.1016/S0377-0427(03)00491-6
Reference: [29] M.  Rüter, S.  Korotov, and Ch.  Steenbock: Goal-oriented error estimates based on different FE-solution spaces for the primal and the dual problem with applications to fracture mechanics.Comput. Mech. 39 (2007), 787–797. MR 2298591, 10.1007/s00466-006-0069-2
Reference: [30] M.  Rüter, E.  Stein: Goal-oriented a posteriori error estimates in linear elastic fracture mechanics.Comput. Methods Appl. Mech. Eng. 195 (2006), 251–278. MR 2186137, 10.1016/j.cma.2004.05.032
Reference: [31] T.  Vejchodský: Guaranteed and locally computable a posteriori error estimate.IMA J.  Numer. Anal. 26 (2006), 525–540. Zbl 1096.65112, MR 2241313, 10.1093/imanum/dri043
Reference: [32] R.  Verfürth: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques.Wiley-Teubner, Stuttgart, 1996.
Reference: [33] O. C. Zienkiewicz, J. Z. Zhu: A simple error estimator and adaptive procedure for practical engineering analysis.Int. J.  Numer. Methods Eng. 24 (1987), 337–357. MR 0875306, 10.1002/nme.1620240206
.

Files

Files Size Format View
AplMat_52-2007-3_4.pdf 364.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo