Previous |  Up |  Next

Article

Title: Some spectral properties of the streaming operator with general boundary conditions (English)
Author: Boulanouar, Mohamed
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 1
Year: 2008
Pages: 1-12
Summary lang: English
.
Category: math
.
Summary: This paper deals with the spectral study of the streaming operator with general boundary conditions defined by means of a boundary operator $K$. We study the positivity and the irreducibility of the generated semigroup proved in [M. Boulanouar, L’opérateur d’Advection: existence d’un $C_0$-semi-groupe (I), Transp. Theory Stat. Phys. 31, 2002, 153–167], in the case $\Vert K\Vert \ge 1$. We also give some spectral properties of the streaming operator and we characterize the type of the generated semigroup in terms of the solution of a characteristic equation. (English)
Keyword: compactness
Keyword: essential type
Keyword: positivity and irreducibility
Keyword: spectral properties
Keyword: streaming operator
Keyword: strongly continuous semigroups
MSC: 47D06
MSC: 47G20
MSC: 47N50
MSC: 82C70
idZBL: Zbl 1199.47178
idMR: MR2382287
DOI: 10.1007/s10492-008-0010-4
.
Date available: 2009-09-22T18:31:56Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134696
.
Reference: [1] F. Ammar-Khodja, M.  Mokhtar-Kharroubi: On the exponential stability of advection semigroups with boundary operator.Math. Models Methods Appl. Sci. 8 (1998), 95–106. MR 1612007, 10.1142/S0218202598000056
Reference: [2] R. Beals, V.  Protopopescu: Abstract time-dependent transport equations.J.  Math. Anal. Appl. 121 (1987), 370–405. MR 0872231, 10.1016/0022-247X(87)90252-6
Reference: [3] G. Borgioli, S.  Totaro: Semigroup generation properties of the streaming operator in dependence of the boundary conditions.Transp. Theory Stat. Phys. 25 (1996), 491–502. MR 1407549, 10.1080/00411459608220716
Reference: [4] G. Borgioli, S. Totaro: 3D-streaming operator with multiplying boundary conditions: Semigroup generation properties.Semigroup Forum 55 (1997), 110–117. MR 1446663, 10.1007/PL00005905
Reference: [5] M. Boulanouar: L’opérateur d’Advection: existence d’un $C_0$-semi-groupe (I).Transp. Theory Stat. Phys. 31 (2002), 153–167. MR 1904837
Reference: [6] Ph. Clément, H. J. A. M. Hijmans, C. J. van Duijn, B. de Paqter: One-Parameter Semigroups.North-Holland, Amsterdam-New York, 1987. MR 0915552
Reference: [7] W. Greenberg, C. van der Mee, V.  Protopopescu: Boundary Value Problems in Abstract Kinetic Theory.Birkhäuser, Basel, 1987. MR 0896904
Reference: [8] R. Dautray, J.-L.  Lions: Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Vol. 9: Évolution: numérique, transport.Masson, Paris, 1988. MR 1016606
Reference: [9] : One-Parameter Semigroups of Positive operators. Lecture Notes in Mathematics 1184.R. Nagel (ed.), Springer, Berlin-New York, 1986. MR 0839450
Reference: [10] B. de Paqter: Irreducible compact operators.Math.  Z. 192 (1986), 149–153. MR 0835399, 10.1007/BF01162028
Reference: [11] M. Schechter: Spectra of Partial Differential Operators.North-Holland, Amsterdam, 1971. Zbl 0225.35001, MR 0869254
Reference: [12] R. Sentis: Equation de transport avec des conditions aux limites de type réflexion.Rapport de recherche, INRIA no. 162, Le Chesnay (France).
Reference: [13] S. Ukai: Solutions of the Boltzmann equation. Patterns and waves.Stud. Math. Appl. 18 (1996), 37–96. MR 0882376
Reference: [14] J. Voigt: Functional analytic treatment of the initial boundary value problem for collisionless gases.Habilitationsschrift, Universität München, 1981.
Reference: [15] L. Weis: The stability of positive semigroups on $L_p$-spaces.Proc. Am. Mat. Soc. 123 (1995), 3089–3094. MR 1273529
.

Files

Files Size Format View
AplMat_53-2008-1_1.pdf 274.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo