Previous |  Up |  Next

Article

Title: A note on the interval-valued marginal problem and its maximum entropy solution (English)
Author: Vejnarová, Jiřina
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 1
Year: 1998
Pages: [17]-26
Summary lang: English
.
Category: math
.
Summary: This contribution introduces the marginal problem, where marginals are not given precisely, but belong to some convex sets given by systems of intervals. Conditions, under which the maximum entropy solution of this problem can be obtained via classical methods using maximum entropy representatives of these convex sets, are presented. Two counterexamples illustrate the fact, that this property is not generally satisfied. Some ideas of an alternative approach are presented at the end of the paper. (English)
Keyword: interval-valued marginal problem
Keyword: maximum entropy solution
MSC: 60E99
MSC: 94A17
idZBL: Zbl 1274.94025
idMR: MR1619052
.
Date available: 2009-09-24T19:13:18Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135182
.
Reference: [1] Cheeseman P.: A method of computing generalized Bayesian probability values for expert systems.In: Proc. 6th Internat. Joint Conference on Artificial Intelligence (IJCAI–83), Karlsruhe 1983, pp. 198–202
Reference: [2] Deming W. E., Stephan F. F.: On a least square adjustment of a sampled frequency table when marginal totals are known.Ann. Math. Statist. 11 (1940), 427–444 MR 0003527, 10.1214/aoms/1177731829
Reference: [3] Gallager R. R.: Information Theory and Reliable Communication.J. Wiley, New York 1968 Zbl 0295.94001
Reference: [4] Jiroušek R., Perez A.: A partial solution of the marginal problem.In: Trans. of the 10th Prague Conference on Inform. Theory, vol. B, Academia, Prague 1987, pp. 11–19
Reference: [5] Kellerer H. G.: Verteilungsfunktionen mit gegebenem Marginalverteilungen.Z. Wahrsch. verw. Gebiete 3 (1964), 247–270 MR 0175158, 10.1007/BF00534912
Reference: [6] Malvestuto F. M.: Existence of extensions and product extensions for discrete probability distributions.Discrete Math. 69 (1988), 61–77 Zbl 0637.60021, MR 0935028, 10.1016/0012-365X(88)90178-1
Reference: [7] Walley P.: Measures of uncertainty in expert systems.Artificial Intelligence 83 (1996), 1–58 MR 1391510, 10.1016/0004-3702(95)00009-7
.

Files

Files Size Format View
Kybernetika_34-1998-1_3.pdf 1.163Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo