Previous |  Up |  Next


linear periodic model; state-space form
In this paper, the problem of obtaining a periodic model in state-space form of a linear process that can be modeled by linear difference equations with periodic coefficients is considered. Such a problem was already studied and solved in [r71] on the basis of the notion of system equivalence, but under the assumption that the process has no null characteristic multiplier. In this paper such an assumption is removed in order to generalize the results in [r71] to linear periodic processes with possibly the null characteristic multiplier (e. g., multirate sampled-data systems). Large system equivalence between two linear periodic models of such processes is introduced and analyzed. For a given linear periodic process the necessary and sufficient conditions are found for the existence of a linear periodic system (i. e., a linear periodic model in state-space form) that is largely system equivalent to the given model of the process, together with an algorithm for deriving such a system when these conditions are satisfied. In addition, the significance of the periodic system thus obtained for describing the original periodic process that is largely system equivalent to the system, is clarified by showing that the controllability, the reconstructibility, the stabilizability, the detectability, the stacked transfer matrix, the asymptotic stability, the rate of convergence of the free motions, and even the number and the dimensions of the Jordan blocks of the monodromy matrix corresponding to each nonnull characteristic multiplier of the periodic system, are determined by the original periodic process (although the order of the periodic system is not, in general, as well as its reachability and observability properties, because of some possible additional or removed null characteristic multipliers).
[1] Berg M. C., Amit, N., Powell J. D.: Multirate digital control system design. IEEE Trans. Automat. Control AC-33 (1988), 1139–1150 DOI 10.1109/9.14436 | Zbl 0711.93041
[2] Bittanti S.: Deterministic and stochastic linear periodic systems: In: Time Series and Linear Systems (S. Bittanti, ed.), Springer–Verlag, Berlin 1986, pp. 141–182 MR 0897824
[3] Callier F. M., Desoer C. A.: Multivariable Feedback Systems. Springer Verlag, New York 1982
[4] Colaneri P.: Zero-error regulation of discrete-time linear periodic systems. Systems Control Lett. 15 (1990), 2, 161–167 DOI 10.1016/0167-6911(90)90010-R | MR 1068922 | Zbl 0712.93047
[5] Colaneri P.: Hamiltonian matrices for lifted systems and periodic Riccati equations in $H_2/H_\infty $ analysis and control. In: Proc. 29th IEEE Conference on Decision and Control, Brighton 1991, pp. 1914–1917
[6] Colaneri P., Longhi S.: The realization problem for linear periodic systems. Automatica 31 (1995), 775–779 DOI 10.1016/0005-1098(94)00155-C | MR 1335982 | Zbl 0822.93019
[7] Chen C. T.: Linear System Theory and Design. Holt Rinchart and Winston, New York 1984
[8] Coll C., Bru R., Sanchez, E., Hernandez V.: Discrete-time linear periodic realization in the frequency domain. Linear Algebra Appl. 203–204 (1994), 301–326 MR 1275515 | Zbl 0802.93041
[9] Dahleh M. A., Voulgaris P. G., Valavani L. S.: Optimal and robust controllers for periodic and multirate systems. IEEE Trans. Automat. Control 37 (1992), 1, 90–99 DOI 10.1109/9.109641 | MR 1139618 | Zbl 0747.93028
[10] Evans D. S.: Finite-dimensional realizations of discrete-time weighting patterns. SIAM J. Appl. Math. 22 (1972), 45–67 DOI 10.1137/0122006 | MR 0378915 | Zbl 0242.93024
[11] Fuhrmann P. A.: On strict system equivalence and similarity. Internat. J. Control 25 (1977), 5–10 DOI 10.1080/00207177708922211 | MR 0472162 | Zbl 0357.93009
[12] Gohberg I., Kaashoek M. A., Lerer L.: Minimality and realization of discrete time-varying systems. Oper. Theory: Adv. Appl. 56 (1992), 261–296 MR 1173922 | Zbl 0747.93054
[13] Grasselli O. M.: A canonical decomposition of linear periodic discrete-time systems. Internat. J. Control 40 (1984), 201–214 DOI 10.1080/00207178408933268 | MR 0750419 | Zbl 0546.93010
[14] Grasselli O. M., Lampariello F.: Dead-beat control of linear periodic discrete-time systems. Internat. J. Control 33 (1981), 1091–1106 DOI 10.1080/00207178108922978 | MR 0624173 | Zbl 0464.93056
[15] Grasselli O. M., Longhi S.: Disturbance localization by measurement feedback for linear periodic discrete-time systems. Automatica 24 (1988), 3, 375–385 DOI 10.1016/0005-1098(88)90078-7 | MR 0947377 | Zbl 0653.93033
[16] Grasselli O. M., Longhi S.: Pole placement for non-reachable periodic discrete-time systems. Math. Control, Signals and Systems 4 (1991), 439–455 MR 1128264
[17] Grasselli O. M., Longhi S.: Robust tracking and regulation of linear periodic discrete-time systems. Internat. J. Control 54 (1991), 3, 613–633 DOI 10.1080/00207179108934179 | MR 1117838 | Zbl 0728.93065
[18] Grasselli O. M., Longhi S.: Finite zero structure of linear periodic discrete-time systems. Internat. J. Systems Science 22 (1991), 10, 1785–1806 DOI 10.1080/00207729108910751 | MR 1128912 | Zbl 0743.93047
[19] Grasselli O. M., Longhi S.: Block decoupling with stability of linear periodic systems. J. Math. Systems, Estimation and Control 3 (1993), 4, 427–458 MR 1318606 | Zbl 0785.93062
[20] Grasselli O. M., Longhi, S., Tornambè A.: System equivalence for periodic models and systems. SIAM J. Control Optim. 33 (1995), 2, 544–468 DOI 10.1137/S0363012992234578 | MR 1318660 | Zbl 0838.93042
[21] Grasselli O. M., Tornambè A.: On obtaining a realization of a polynomial matrix description of a system. IEEE Trans. Automat. Control 37 (1992), 852–856 DOI 10.1109/9.256346 | MR 1164565 | Zbl 0760.93002
[22] Grasselli O. M., Longhi S., Tornambè, A., Valigi P.: Robust output regulation and tracking for linear periodic systems under structured uncertainties. Automatica 32 (1996), 1015–1019 DOI 10.1016/0005-1098(96)00046-5 | MR 1405456 | Zbl 0854.93062
[23] Ho B. L., Kalman R. E.: Effective construction of linear state- variable models from input-output functions. Regelungstechnik 14 (1966), 545–548 Zbl 0145.12701
[24] Kailath T.: Linear Systems. Englewood Cliffs, Prentice Hall, NJ 1980 MR 0569473 | Zbl 0870.93013
[25] Kono M.: Eigenvalue assignment in linear periodic discrete-time systems. Internat. J. Control 32 (1980), 149–158 DOI 10.1080/00207178008922850 | MR 0580197 | Zbl 0443.93044
[26] Lin C. A., King C. W.: Minimal periodic realizations of transfer matrices. IEEE Trans. Automat. Control AC-38 (1993), 3, 462–466 DOI 10.1109/9.210146 | MR 1214252 | Zbl 0789.93089
[27] Meyer R. A., Burrus C. S.: A unified analysis of multirate and periodically time-varying digital filters. IEEE Trans. Circuit and Systems 22 (1975), 162–168 DOI 10.1109/TCS.1975.1084020 | MR 0392090
[28] Park B. P., Verriest E. I.: Canonical forms on discrete linear periodically time-varying systems and a control application. In: Proc. 28th IEEE Conference on Decision and Control, Tampa 1989, pp. 1220–1225 MR 1038997
[29] Park B. P., Verriest E. I.: Time-frequency transfer function and realization algorithm for discrete periodic linear systems. In: Proc. 32th IEEE Conference on Decision and Control, San Antonio 1993, pp. 2401–2402
[30] Rosenbrock H. H.: State-space and Multivariable Theory. Nelson, London 1970 MR 0325201 | Zbl 0246.93010
[31] Sanchez E., Hernandez, V., Bru R.: Minimal realization of discrete-time periodic systems. Linear Algebra Appl. 162–164 (1992), 685–708 MR 1148426
[32] Wolovich W. A., Guidorzi R.: A general algorithm for determining state-space representations. Automatica 13 (1977), 295–299 DOI 10.1016/0005-1098(77)90056-5 | Zbl 0358.93008
Partner of
EuDML logo