Previous |  Up |  Next

Article

Title: Periodic systems largely system equivalent to periodic discrete-time processes (English)
Author: Grasselli, Osvaldo Maria
Author: Longhi, Sauro
Author: Tornambè, Antonio
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 1
Year: 2001
Pages: [1]-20
Summary lang: English
.
Category: math
.
Summary: In this paper, the problem of obtaining a periodic model in state-space form of a linear process that can be modeled by linear difference equations with periodic coefficients is considered. Such a problem was already studied and solved in [r71] on the basis of the notion of system equivalence, but under the assumption that the process has no null characteristic multiplier. In this paper such an assumption is removed in order to generalize the results in [r71] to linear periodic processes with possibly the null characteristic multiplier (e. g., multirate sampled-data systems). Large system equivalence between two linear periodic models of such processes is introduced and analyzed. For a given linear periodic process the necessary and sufficient conditions are found for the existence of a linear periodic system (i. e., a linear periodic model in state-space form) that is largely system equivalent to the given model of the process, together with an algorithm for deriving such a system when these conditions are satisfied. In addition, the significance of the periodic system thus obtained for describing the original periodic process that is largely system equivalent to the system, is clarified by showing that the controllability, the reconstructibility, the stabilizability, the detectability, the stacked transfer matrix, the asymptotic stability, the rate of convergence of the free motions, and even the number and the dimensions of the Jordan blocks of the monodromy matrix corresponding to each nonnull characteristic multiplier of the periodic system, are determined by the original periodic process (although the order of the periodic system is not, in general, as well as its reachability and observability properties, because of some possible additional or removed null characteristic multipliers). (English)
Keyword: linear periodic model
Keyword: state-space form
MSC: 93A30
MSC: 93B05
MSC: 93B17
MSC: 93C55
idZBL: Zbl 1265.93175
idMR: MR1825754
.
Date available: 2009-09-24T19:36:41Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135385
.
Reference: [1] Berg M. C., Amit, N., Powell J. D.: Multirate digital control system design.IEEE Trans. Automat. Control AC-33 (1988), 1139–1150 Zbl 0711.93041, 10.1109/9.14436
Reference: [2] Bittanti S.: Deterministic and stochastic linear periodic systems: In: Time Series and Linear Systems (S.Bittanti, ed.), Springer–Verlag, Berlin 1986, pp. 141–182 MR 0897824
Reference: [3] Callier F. M., Desoer C. A.: Multivariable Feedback Systems.Springer Verlag, New York 1982
Reference: [4] Colaneri P.: Zero-error regulation of discrete-time linear periodic systems.Systems Control Lett. 15 (1990), 2, 161–167 Zbl 0712.93047, MR 1068922, 10.1016/0167-6911(90)90010-R
Reference: [5] Colaneri P.: Hamiltonian matrices for lifted systems and periodic Riccati equations in $H_2/H_\infty $ analysis and control.In: Proc. 29th IEEE Conference on Decision and Control, Brighton 1991, pp. 1914–1917
Reference: [6] Colaneri P., Longhi S.: The realization problem for linear periodic systems.Automatica 31 (1995), 775–779 Zbl 0822.93019, MR 1335982, 10.1016/0005-1098(94)00155-C
Reference: [7] Chen C. T.: Linear System Theory and Design.Holt Rinchart and Winston, New York 1984
Reference: [8] Coll C., Bru R., Sanchez, E., Hernandez V.: Discrete-time linear periodic realization in the frequency domain.Linear Algebra Appl. 203–204 (1994), 301–326 Zbl 0802.93041, MR 1275515
Reference: [9] Dahleh M. A., Voulgaris P. G., Valavani L. S.: Optimal and robust controllers for periodic and multirate systems.IEEE Trans. Automat. Control 37 (1992), 1, 90–99 Zbl 0747.93028, MR 1139618, 10.1109/9.109641
Reference: [10] Evans D. S.: Finite-dimensional realizations of discrete-time weighting patterns.SIAM J. Appl. Math. 22 (1972), 45–67 Zbl 0242.93024, MR 0378915, 10.1137/0122006
Reference: [11] Fuhrmann P. A.: On strict system equivalence and similarity.Internat. J. Control 25 (1977), 5–10 Zbl 0357.93009, MR 0472162, 10.1080/00207177708922211
Reference: [12] Gohberg I., Kaashoek M. A., Lerer L.: Minimality and realization of discrete time-varying systems.Oper. Theory: Adv. Appl. 56 (1992), 261–296 Zbl 0747.93054, MR 1173922
Reference: [13] Grasselli O. M.: A canonical decomposition of linear periodic discrete-time systems.Internat. J. Control 40 (1984), 201–214 Zbl 0546.93010, MR 0750419, 10.1080/00207178408933268
Reference: [14] Grasselli O. M., Lampariello F.: Dead-beat control of linear periodic discrete-time systems.Internat. J. Control 33 (1981), 1091–1106 Zbl 0464.93056, MR 0624173, 10.1080/00207178108922978
Reference: [15] Grasselli O. M., Longhi S.: Disturbance localization by measurement feedback for linear periodic discrete-time systems.Automatica 24 (1988), 3, 375–385 Zbl 0653.93033, MR 0947377, 10.1016/0005-1098(88)90078-7
Reference: [16] Grasselli O. M., Longhi S.: Pole placement for non-reachable periodic discrete-time systems.Math. Control, Signals and Systems 4 (1991), 439–455 MR 1128264
Reference: [17] Grasselli O. M., Longhi S.: Robust tracking and regulation of linear periodic discrete-time systems.Internat. J. Control 54 (1991), 3, 613–633 Zbl 0728.93065, MR 1117838, 10.1080/00207179108934179
Reference: [18] Grasselli O. M., Longhi S.: Finite zero structure of linear periodic discrete-time systems.Internat. J. Systems Science 22 (1991), 10, 1785–1806 Zbl 0743.93047, MR 1128912, 10.1080/00207729108910751
Reference: [19] Grasselli O. M., Longhi S.: Block decoupling with stability of linear periodic systems.J. Math. Systems, Estimation and Control 3 (1993), 4, 427–458 Zbl 0785.93062, MR 1318606
Reference: [20] Grasselli O. M., Longhi, S., Tornambè A.: System equivalence for periodic models and systems.SIAM J. Control Optim. 33 (1995), 2, 544–468 Zbl 0838.93042, MR 1318660, 10.1137/S0363012992234578
Reference: [21] Grasselli O. M., Tornambè A.: On obtaining a realization of a polynomial matrix description of a system.IEEE Trans. Automat. Control 37 (1992), 852–856 Zbl 0760.93002, MR 1164565, 10.1109/9.256346
Reference: [22] Grasselli O. M., Longhi S., Tornambè, A., Valigi P.: Robust output regulation and tracking for linear periodic systems under structured uncertainties.Automatica 32 (1996), 1015–1019 Zbl 0854.93062, MR 1405456, 10.1016/0005-1098(96)00046-5
Reference: [23] Ho B. L., Kalman R. E.: Effective construction of linear state- variable models from input-output functions.Regelungstechnik 14 (1966), 545–548 Zbl 0145.12701
Reference: [24] Kailath T.: Linear Systems.Englewood Cliffs, Prentice Hall, NJ 1980 Zbl 0870.93013, MR 0569473
Reference: [25] Kono M.: Eigenvalue assignment in linear periodic discrete-time systems.Internat. J. Control 32 (1980), 149–158 Zbl 0443.93044, MR 0580197, 10.1080/00207178008922850
Reference: [26] Lin C. A., King C. W.: Minimal periodic realizations of transfer matrices.IEEE Trans. Automat. Control AC-38 (1993), 3, 462–466 Zbl 0789.93089, MR 1214252, 10.1109/9.210146
Reference: [27] Meyer R. A., Burrus C. S.: A unified analysis of multirate and periodically time-varying digital filters.IEEE Trans. Circuit and Systems 22 (1975), 162–168 MR 0392090, 10.1109/TCS.1975.1084020
Reference: [28] Park B. P., Verriest E. I.: Canonical forms on discrete linear periodically time-varying systems and a control application.In: Proc. 28th IEEE Conference on Decision and Control, Tampa 1989, pp. 1220–1225 MR 1038997
Reference: [29] Park B. P., Verriest E. I.: Time-frequency transfer function and realization algorithm for discrete periodic linear systems.In: Proc. 32th IEEE Conference on Decision and Control, San Antonio 1993, pp. 2401–2402
Reference: [30] Rosenbrock H. H.: State-space and Multivariable Theory.Nelson, London 1970 Zbl 0246.93010, MR 0325201
Reference: [31] Sanchez E., Hernandez, V., Bru R.: Minimal realization of discrete-time periodic systems.Linear Algebra Appl. 162–164 (1992), 685–708 MR 1148426
Reference: [32] Wolovich W. A., Guidorzi R.: A general algorithm for determining state-space representations.Automatica 13 (1977), 295–299 Zbl 0358.93008, 10.1016/0005-1098(77)90056-5
.

Files

Files Size Format View
Kybernetika_37-2001-1_1.pdf 3.575Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo