Previous |  Up |  Next

Article

Title: Combining forecasts using the least trimmed squares (English)
Author: Víšek, Jan Ámos
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 2
Year: 2001
Pages: [183]-204
Summary lang: English
.
Category: math
.
Summary: Employing recently derived asymptotic representation of the least trimmed squares estimator, the combinations of the forecasts with constraints are studied. Under assumption of unbiasedness of individual forecasts it is shown that the combination without intercept and with constraint imposed on the estimate of regression coefficients that they sum to one, is better than others. A numerical example is included to support theoretical conclusions. (English)
Keyword: regression coefficients
MSC: 62F30
MSC: 62F35
MSC: 62J05
MSC: 62M10
MSC: 62M20
MSC: 65C60
idZBL: Zbl 1264.62087
idMR: MR1835816
.
Date available: 2009-09-24T19:38:27Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135400
.
Reference: [1] Bates J. M., Granger C. W. J.: The combination of forecasts.Oper. Res. Quarterly 20 (1969), 451–468 10.1057/jors.1969.103
Reference: [2] Bickel P. J.: One-step Huber estimates in the linear model.J. Amer. Statist. Assoc. 70 (1975), 428–433 Zbl 0322.62038, MR 0386168, 10.1080/01621459.1975.10479884
Reference: [3] Clemen R. T.: Linear constraints and efficiency of combined forecasts.J. of Forecasting 6 (1986), 31–38 10.1002/for.3980050104
Reference: [4] Hampel F. R., Ronchetti E. M., Rousseeuw P. J., Stahel W. A.: Robust Statistics – The Approach Based on Influence Functions.Wiley, New York 1986 Zbl 0733.62038, MR 0829458
Reference: [5] Peel K. Holdenand D. A.: Unbiasedness, efficiency and the combination of economic forecasts.J. of Forecasting 8 (1989), 175–188 10.1002/for.3980080304
Reference: [6] Huber P. J.: Robust Statistics.Wiley, New York 1981 MR 0606374
Reference: [7] Jurečková J., Sen P. K.: Regression rank scores scale statistics and studentization in linear models.In: Proceedings of the Fifth Prague Symposium on Asymptotic Statistics, Physica Verlag, Heidelberg 1993, pp. 111–121 MR 1311932
Reference: [8] Rao R. C.: Linear Statistical Inference and Its Applications.Wiley, New York 1973 Zbl 0256.62002, MR 0346957
Reference: [9] Rubio A. M., Aguilar L. Z., Víšek J. Á.: Combining the forecasts using constrained $M$-estimators.Bull. Czech Econometric Society 4 (1996), 61–72
Reference: [10] Rubio A. M., Víšek J. Á.: Estimating the contamination level of data in the framework of linear regression analysis.Qűestiió 21 (1997), 9–36 Zbl 1167.62388, MR 1476149
Reference: [11] Varadarajan V. S.: A useful convergence theorem.Sankhyã 20 (1958), 221–222 Zbl 0088.11303, MR 0107290
Reference: [12] Víšek J. Á.: Stability of regression model estimates with respect to subsamples.Computational Statistics 7 (1992), 183–203 Zbl 0775.62182, MR 1178353
Reference: [13] Víšek J. Á.: Statistická analýza dat.(Statistical Data Analysis – a textbook in Czech.) Publishing House of the Czech Technical University Prague 1997
Reference: [14] Víšek J. Á.: Robust constrained combination of forecasts.Bull. Czech Econometric Society 5 (1998), 8, 53–80
Reference: [15] Víšek J. Á.: Robust instruments.In: Robust’98 (J. Antoch and G. Dohnal, eds.), Union of the Czech Mathematicians and Physicists, Prague 1998, pp. 195–224
Reference: [16] Víšek J. Á.: Robust specification test.In: Proceedings of Prague Stochastics’98 (M. Hušková, P. Lachout and J. Á. Víšek, eds.), Union of Czech Mathematicians and Physicists 1998, pp. 581–586
Reference: [17] Víšek J. Á.: Robust estimation of regression model.Bull. Czech Econometric Society 9 (1999), 57–79
Reference: [18] Víšek J. Á.: The least trimmed squares – random carriers.Bull. Czech Econometric Society 10 (1999), 1–30
Reference: [19] Víšek J. Á.: Robust instrumental variables and specification test.In: PRASTAN 2000, Proceedings of the conference “Mathematical Statistics and Numerical Mathematics and Their Applications”, (M. Kalina, J. Kalická, O. Nanásiová and A. Handlovičová, eds.), Comenius University, pp. 133–164
Reference: [20] Víšek J. Á.: Regression with high breakdown point.In: Proceedings of ROBUST 2000, Nečtiny, Union of the Czech Mathematicians and Physicists and The Czech Statistical Society. Submitted
Reference: [21] Víšek J. Á.: A new paradigm of point estimation.In: Proceedings of seminar “Data Processing”, TRYLOBITE, Pardubice 2000. Submitted
Reference: [22] Wald A., Wolfowitz J.: Statistical tests based on permutations of the observations.Ann. Math. Statist. 15 (1944), 358–372 Zbl 0063.08124, MR 0011424, 10.1214/aoms/1177731207
Reference: [23] Yohai V. J., Maronna R. A.: Asymptotic behaviour of $M$-estimators for the linear model.Ann. Statist. 7 (1979), 258–268 MR 0520237, 10.1214/aos/1176344610
.

Files

Files Size Format View
Kybernetika_37-2001-2_7.pdf 2.652Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo