Previous |  Up |  Next

Article

Title: Static output feedback controller design (English)
Author: Veselý, Vojtech
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 2
Year: 2001
Pages: [205]-221
Summary lang: English
.
Category: math
.
Summary: In this paper new necessary and sufficient conditions for static output feedback stabilizability for continuous and discrete time linear time invariant systems have been proposed. These conditions form the basis for the procedure of static output feedback controller design proposed in this paper. The proposed LMI based algorithms are computationally simple and tightly connected with the Lyapunov stability theory and LQ optimal state feedback design. The structure of the output feedback gain matrix, including a decentralized one, can be prescribed by the designer. In this way the decentralized output feedback controller can be designed. (English)
Keyword: output feedback controller
Keyword: LMI based algorithm
MSC: 93B51
MSC: 93B52
MSC: 93D15
idZBL: Zbl 1265.93204
idMR: MR1839228
.
Date available: 2009-09-24T19:38:34Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135401
.
Reference: [1] Benton I. E., Smith D.: A non iterative LMI based algorithm for robust static output feedback stabilization.Internat. J. Control 72 (1999), 14, 1322–1330 Zbl 0960.93048, MR 1712166, 10.1080/002071799220290
Reference: [2] Boyd S., Ghaoui L. El, Feron E., Balakrishnam V.: Linear matrix inequalities in system and control theory.SIAM 15 (1994), Philadelphia MR 1284712
Reference: [3] Blondel V., Gevers M., Lindquist A.: Survey on the state of systems and control.European J. Control 1 (1995), 5, 2–23 Zbl 1177.93001, 10.1016/S0947-3580(95)70004-8
Reference: [4] Ghaoui L. El, Balakrishnan V.: Synthesis of fixed structure controllers via numerical optimization.In: Proc. of the 33rd Conference on Decision and Control, Lake Buena Vista 1994, pp. 2678–2683
Reference: [5] Geromel J. C., Peres P. L. D.: Decentralized load-frequency control.Proc. IEE–D 132 (1985), 225–230
Reference: [6] Goh K. C., Safonov M. G., Ly J. H.: Robust synthesis via bilinear matrix inequalities.Internat. J. Robust and Nonlinear Control 6 (1996), 1079–1095 Zbl 0861.93015, MR 1429443, 10.1002/(SICI)1099-1239(199611)6:9/10<1079::AID-RNC270>3.0.CO;2-#
Reference: [7] Goh K. G., Safonov M. G., Papavassilopoulos G. P.: Global optimization for the biaffine matrix inequality problem.J. Global Optimization 7 (1995), 365–380 Zbl 0844.90083, MR 1365801, 10.1007/BF01099648
Reference: [8] Iwasaki T., Skelton R. L., Geromel J. G.: Linear quadratic suboptimal control with static output feedback.Systems Control Lett. 23 (1994), 421–430 Zbl 0873.49021, MR 1304473, 10.1016/0167-6911(94)90096-5
Reference: [9] Iwasaki T., Skelton R. E.: All controllers for the general $H_{\infty }$ control problem: LMI existence conditions and state space formulas.Automatica 30 (1994), 8, 1307–1314 MR 1288621
Reference: [10] Kose I. E., Jabbari F.: Robust control of linear systems with real parametric uncertainty.Automatica 35 (1999), 679–687 Zbl 0982.93033, MR 1827393, 10.1016/S0005-1098(98)00184-8
Reference: [11] Kučera V., deSouza C. E.: A necessary and sufficient condition for output feedback stabilizability.Automatica 31 (1995), 9, 1357–1359 MR 1349414, 10.1016/0005-1098(95)00048-2
Reference: [12] Lankaster P.: Theory of Matrices.Academic Press, New York – London 1969 MR 0245579
Reference: [13] Yu, Li, Chu, Jian: An LMI approach to guaranteed cost control of linear uncertain time-delay systems.Automatica 35 (1999), 1155–1159 Zbl 1041.93530, MR 1831625, 10.1016/S0005-1098(99)00007-2
Reference: [14] Rosinová D., Veselý V., Kučera V.: A necessary and sufficient condition for output feedback stabilizability of linear discrete-time systems.In: IFAC Conference Control System Design, Bratislava 2000, pp. 164–167
Reference: [15] Safonov M. G., Goh K. G., Ly J.: Control system synthesis via bilinear matrix inequalities.In: Proc. American Control Conf., Baltimore 1994, IEEE Press, New York, pp. 1–5
Reference: [16] Syrmos V. L., Abdalah C. T., Dorato P., Grigoriadis K.: Static output feedback – A survey.Automatica 33 (1997), 2, 125–137 MR 1436056, 10.1016/S0005-1098(96)00141-0
Reference: [17] Toker O., Özbay H.: On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback.In: Proc. ACC 1995, pp. 2525–2526
Reference: [18] Gao, Yong-Yan, Sun, You-Xian: Static output feedback simultaneous stabilization: LMI approach.Internat. J. Control 70 (1998), 5, 803–814 MR 1634668, 10.1080/002071798222145
.

Files

Files Size Format View
Kybernetika_37-2001-2_8.pdf 1.747Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo