Previous |  Up |  Next

Article

Title: An asymptotic state observer for a class of nonlinear delay systems (English)
Author: Germani, Alfredo
Author: Manes, Costanzo
Author: Pepe, Pierdomenico
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 4
Year: 2001
Pages: [459]-478
Summary lang: English
.
Category: math
.
Summary: The problem of state reconstruction from input and output measurements for nonlinear time delay systems is studied in this paper and a state observer is proposed that is easy to implement and, under suitable assumptions on the system and on the input function, gives exponential observation error decay. The proposed observer is itself a delay system and can be classified as an identity observer, in that it is such that if at a given time instant the system and observer states coincide, on a suitable Hilbert space, the observation error remains zero in all following time instants. The computation of the observer gain is straightforward. Computer simulations are reported that show the good performance of the observer. (English)
Keyword: nonlinear system
Keyword: time-delay system
Keyword: observability
MSC: 93B07
MSC: 93C10
MSC: 93C23
idZBL: Zbl 1265.93029
idMR: MR1859096
.
Date available: 2009-09-24T19:41:00Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135421
.
Reference: [1] Banks H. T., Kappel F.: Spline approximations for functional differential equations.J. Differential Equations 34 (1979), 496–522 Zbl 0422.34074, MR 0555324, 10.1016/0022-0396(79)90033-0
Reference: [2] Bensoussan A., Prato G. Da, Delfour M. C., Mitter S. K.: Representation and control of Infinite Dimensional Systems.Birkhauser, Boston 1992 Zbl 1117.93002, MR 2273323
Reference: [3] Ciccarella G., Mora, M. Dalla, Germani A.: A Luenberger-like observer for nonlinear systems.Internat. J. Control 57 (1993), 3, 537–556 Zbl 0772.93018, MR 1205006, 10.1080/00207179308934406
Reference: [4] Mora M. Dalla, Germani, A., Manes C.: Design of state observers from a drift-observability property.IEEE Trans. Automat. Control 45 (2000), 6, 1536–1540 MR 1797411, 10.1109/9.871767
Reference: [5] Dambrine M., Goubet, A., Richard J. P.: New results on constrained stabilizing control of time-delay systems.In: Proc. 34th IEEE Conference on Decision and Control, Vol. 2, New Orleans 1995, pp. 2052–2057
Reference: [6] Fairman F. W., Kumar A.: Delayless observers for systems with delay.IEEE Trans. Automat.Control AC-31 (1986), 3, 258–259 Zbl 0597.93010, 10.1109/TAC.1986.1104228
Reference: [7] Fattouh A., Sename, O., Dion J. M.: Robust observer design for time-delay sysems: a Riccati equation approach.Kybernetika 35 (1999), 6, 753–764 MR 1747974
Reference: [8] Germani A., Manes, C., Pepe P.: Linearization of input-output mapping for nonlinear delay systems via static state feedback.In: Proc. of IMACS Multiconference on Computational Engineering in Systems Applications, Vol. 1, Lille 1996, pp. 599–602
Reference: [9] Germani A., Manes, C., Pepe P.: Linearization and Decoupling of nonlinear delay systems.In: Proc. IEEE 1998 American Control Conference (ACC’98), Philadelphia 1998
Reference: [10] Germani A., Manes, C., Pepe P.: A state observer for nonlinear delay systems.In: Proc. 37th IEEE Conference on Decision and Control (CDC’98), Tampa 1998, Vol. 1, pp. 355–360
Reference: [11] Germani A., Manes, C., Pepe P.: An observer for M.I.M.O. nonlinear delay systems. In: IFAC World Congress 99, Beijing 1999, Vol. E, pp. 243–248
Reference: [12] Germani A., Manes C.: State observers for nonlinear systems with Smooth/Bounded Input.Kybernetika 35 (1999), 4, 393-413 MR 1723526
Reference: [13] Germani A., Manes, C., Pepe P.: Local asymptotic stability for nonlinear state feedback delay systems.Kybernetika 36 (2000), 1, 31–42 MR 1760886
Reference: [14] Germani A., Manes, C., Pepe P.: State observation of nonlinear systems with delayed Output Measurements.In: IFAC Workshop on Time Delay Systems (LTDS2000), Ancona 2000
Reference: [15] Germani A., Manes, C., Pepe P.: A twofold spline approximation for finite horizon LQG control of hereditary systems.SIAM J. Control Optim. 39 (2000), 4, 1233–1295 Zbl 1020.93030, MR 1814274, 10.1137/S0363012998337461
Reference: [16] Gibson J. S.: Linear quadratic optimal control of hereditary differential systems: infinite-dimensional Riccati equations and numerical approximations.SIAM J. Control Optim. 31 (1983), 95–139 Zbl 0557.49017, MR 0688442, 10.1137/0321006
Reference: [17] Isidori A.: Nonlinear Control Systems.Third edition. Springer–Verlag, Berlin 1995 Zbl 0931.93005
Reference: [18] Lee E. B., Olbrot A. W.: Observability and related structural results for linear hereditary systems.Internat. J. Control 34 (1981), 6, 1061–1078 Zbl 0531.93015, MR 0643872, 10.1080/00207178108922582
Reference: [19] Lehman B., Bentsman J., Lunel S. V., Verriest E. I.: Vibrational control of nonlinear time lag systems with bounded delay: averaging theory, stabilizability, and transient behavior.IEEE Trans. Automat. Control 5 (1994), 898–912, 1994 Zbl 0813.93044, MR 1274337, 10.1109/9.284867
Reference: [20] Moog C. H., Castro, R., Velasco M.: The disturbance decoupling problem for nonlinear systems with multiple time-delays: static state feedback solutions.In: Proc. IMACS Multiconference on Computational Engineering in Systems Applications, Lille 1996
Reference: [21] Olbrot A. W.: Observability and observers for a class of Linear systems with delays.IEEE Trans. Automat. Control AC-26 (1981), 2, 513–517 Zbl 0474.93019, MR 0613565, 10.1109/TAC.1981.1102616
Reference: [22] Pearson A. E., Fiagbedzi Y. A.: An observer for time lag systems.IEEE Trans. Automat. Control 34 (1989), 7, 775–777 Zbl 0687.93011, MR 1000675, 10.1109/9.29412
Reference: [23] Rosen I. G.: Difference equation state approximations for nonlinear hereditary control problems.SIAM J. Control Optim. 2 (1984), 302–326 Zbl 0579.49026, MR 0732430, 10.1137/0322021
Reference: [24] Salamon D.: Observers and duality between observation and state feedback for time delay systems.IEEE Trans. Automat. Control AC-25 (1980), 6, 1187–1192 Zbl 0471.93011, MR 0601503, 10.1109/TAC.1980.1102507
Reference: [25] Watanabe K.: Finite spectrum assignment and observer for multivariable systems with commensurate delays.IEEE Trans. Automat. Control AC-31 (1986), 6, 543–550 Zbl 0596.93009, MR 0839083, 10.1109/TAC.1986.1104336
Reference: [26] Yao Y. X., Zhang Y. M., Kovacevic R.: Functional observer and state feedback for input time-delay systems.Internat. J. Control 66 (1997), 4, 603–617 Zbl 0873.93015, MR 1673792, 10.1080/002071797224612
.

Files

Files Size Format View
Kybernetika_37-2001-4_5.pdf 2.851Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo