Previous |  Up |  Next

Article

Title: Discretization schemes for Lyapunov-Krasovskii functionals in time-delay systems (English)
Author: Gu, Keqin
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 4
Year: 2001
Pages: [479]-504
Summary lang: English
.
Category: math
.
Summary: This article gives an overview of discretized Lyapunov functional methods for time-delay systems. Quadratic Lyapunov–Krasovskii functionals are discretized by choosing the kernel to be piecewise linear. As a result, the stability conditions may be written in the form of linear matrix inequalities. Conservatism may be reduced by choosing a finer mesh. Simplification techniques, including elimination of variables and using integral inequalities are also discussed. Systems with multiple delays and distributed delays are also treated. Finally, the treatment of uncertainties and input-output performance requirements are discussed. (English)
Keyword: time-delay system
Keyword: Lyapunov-Krasovskii functional
Keyword: multiple delays
MSC: 93B40
MSC: 93C23
MSC: 93C55
MSC: 93D05
MSC: 93D09
idZBL: Zbl 1265.93176
idMR: MR1859097
.
Date available: 2009-09-24T19:41:07Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135422
.
Reference: [1] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory.SIAM, Philadelphia 1994 Zbl 0816.93004, MR 1284712
Reference: [2] Boyd S., Yang Q.: Structured and simultaneous Lyapunov functions for system stability problems.Internat. J. Control 49 (1989), 2215–2240 Zbl 0729.93067, MR 1007704, 10.1080/00207178908559769
Reference: [3] Souza C. E. De, Li X.: Delay-dependent robust $H_{\infty }$ control of uncertain linear state-delayed systems.Automatica 35 (1999), 1313–1321 MR 1829975, 10.1016/S0005-1098(99)00025-4
Reference: [4] Doyle J. C., Wall, J., Stein G.: Performance and robustness analysis for structured uncertainty.In: IEEE Conference on Decision and Control 1982, pp. 629–636
Reference: [5] Gahinet P., Nemirovski A., Laub A. J., Chilali M.: LMI Control Toolbox for use with MATLAB.Natick, MA MathWorks, 1995
Reference: [6] Gu K.: Discretized LMI set in the stability problem of linear uncertain time-delay systems.Internat. J. Control 68 (1997), 923–934 MR 1689707, 10.1080/002071797223406
Reference: [7] Gu K.: Stability of linear time-delay systems with block-diagonal uncertainty.In: 1998 American Control Conference, Philadelphia 1998, pp. 1943–1947
Reference: [8] Gu K.: Discretized Lyapunov functional for uncertain systems with multiple time-delay.Internat. J. Control 72 (1999), 16, 1436–1445 Zbl 0959.93053, MR 1723330, 10.1080/002071799220092
Reference: [9] Gu K.: Partial solution of LMI in stability problem of time-delay systems.In: Proc. 38th IEEE Conference on Decision and Control 1999, pp. 227–232
Reference: [10] Gu K.: A generalized discretization scheme of Lyapunov functional in the stability problem of linear uncertain time-delay systems.Internat. J. Robust and Nonlinear Control 9 (1999), 1–14 Zbl 0923.93046, MR 1669772, 10.1002/(SICI)1099-1239(199901)9:1<1::AID-RNC382>3.0.CO;2-S
Reference: [11] Gu K.: An integral inequality in the stability problem of time-delay systems.In: Proc. 39th IEEE Conference on Decision and Control 2000
Reference: [12] Gu K.: A further refinement of discretized Lyapunov functional method for the stability of time-delay systems.Internat. J. Control 74 (2001), 10, 967–976 Zbl 1015.93053, MR 1847365, 10.1080/00207170110047190
Reference: [13] Gu K., Han Q.-L.: Discretized Lyapunov functional for linear uncertain systems with time-varying delay.In: 2000 American Control Conference, Chicago 2000
Reference: [14] Gu K., Han Q.-L., Luo A. C. J., Niculescu S.-I.: Discretized Lyapunov functional for systems with distributed delay and piecewise constant coefficients.Internat. J. Control 74 (2001), 7, 737–744 Zbl 1015.34061, MR 1826755, 10.1080/00207170010031486
Reference: [15] Gu K., Luo A. C. J., Niculescu S.-I.: Discretized Lyapunov functional for systems with distributed delay.In: 1999 European Control Conference, Karlsruhe 1999
Reference: [16] Gu K., Niculescu S.-I.: Additional dynamics in transformed time-delay systems.IEEE Trans. Automat. Control 45 (2000), 572–575 Zbl 0986.34066, MR 1762880, 10.1109/9.847747
Reference: [17] Gu K., Niculescu S.-I.: Further remarks on additional dynamics in various model transformations of linear delay systems.In: 2000 American Control Conference, Chicago 2000 Zbl 1056.93511, MR 1819827
Reference: [18] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations.Springer–Verlag, New York 1993 MR 1243878
Reference: [19] Han Q.-L., Gu K.: On robust stability of time-delay systems with norm-bounded uncertainty.IEEE Trans. Automat. Control, accepted Zbl 1006.93054, MR 1853685
Reference: [20] Han Q.-L., Gu K.: Stability of linear systems with time-varying delay: a generalized discretized Lyapunov functional approach.Asian J. of Control, accepted
Reference: [21] Huang W.: Generalization of Liapunov’s theorem in a linear delay system.J. Math. Anal. Appl. 142 (1989), 83–94 Zbl 0705.34084, MR 1011411, 10.1016/0022-247X(89)90166-2
Reference: [22] Infante E. F., Castelan W. V.: A Lyapunov functional for a matrix difference-differential equation.J. Differential Equations 29 (1978), 439–451 MR 0507489, 10.1016/0022-0396(78)90051-7
Reference: [23] Kharitonov V.: Robust stability analysis of time delay systems: A survey.In: Proc. IFAC System Structure Control, Nantes 1998
Reference: [24] Kharitonov V. L., Melchor–Aguilar D. A.: Some remarks on model transformations used for stability and robust stability analysis of time-delay systems.In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 1142–1147
Reference: [25] Kolmanovskii V. B., Niculescu S.-I., Gu K.: Delay effects on stability: a survey.In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 1993–1998
Reference: [26] Kolmanovskii V. B., Richard J.-P.: Stability of some systems with distributed delays.In: JESA, special issue on “Analysis and Control of Time-delay Systems”, 31 (1997), 971–982
Reference: [27] Krasovskii N. N.: Stability of Motion.Stanford University Press, 1963 Zbl 0109.06001, MR 0147744
Reference: [28] Li X., Souza C. E. de: Criteria for robust stability and stabilization of uncertain linear systems with state delay.Automatica 33 (1997), 1657–1662 MR 1481824, 10.1016/S0005-1098(97)00082-4
Reference: [29] Nesterov Y., Nemirovskii A.: Interior–Point Polynomial Algorithms in Convex Programming SIAM, Philadelphia 199. MR 1258086
Reference: [30] Niculescu S. I., Dugard, L., Dion J. M.: Stabilité et stabilisation robustes des systèmes à retard.In: Proc. Journées Robustesse, Toulouse 1995
Reference: [31] Niculescu S. I., Souza C. E. de, Dion J. M., Dugard L.: Robust stability and stabilization of uncertain linear systems with state delay: single delay case (I), and Multiple delays case (II).In: Proc. IFAC Workshop Robust Control Design, Rio de Janeiro 1994, pp. 469–474 and 475–480
Reference: [32] Niculescu S. I., Verriest E. I., Dugard, L., Dion J. M.: Stability and robust stability of time-delay systems: A guided tour.In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Information Sciences), Springer–Verlag, London 1997, pp. 1–71 MR 1482571
Reference: [33] Packard A., Doyle J.: The complex structured singular value.Automatica 29 (1993), 71–109 Zbl 0772.93023, MR 1200542, 10.1016/0005-1098(93)90175-S
Reference: [34] Zhou K., Doyle J. C., Glover K.: Robust and Optimal Control.Prentice Hall, Englewood Cliffs, N.J. 1996 Zbl 0999.49500
.

Files

Files Size Format View
Kybernetika_37-2001-4_6.pdf 3.752Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo