Previous |  Up |  Next


Approximations to the critical values for tests for multiple changes in location models are obtained through permutation tests principle. Theoretical results say that the approximations based on the limit distribution and the permutation distribution of the test statistics behave in the same way in the limit. However, the results of simulation study show that the permutation tests behave considerably better than the corresponding tests based on the asymptotic critical value.
[1] Antoch J., Hušková M.: Tests and estimators for epidemic alternatives. In: Tatra Mountains Mathematical Publications (A. Pázman and V. Witkovský, eds.), 1996, vol. 7, pp. 311–330 MR 1408487 | Zbl 0919.62036
[2] Antoch J., Hušková, M., Jarušková D.: Change point detection. In: Lecture Notes of the 5th IASC Summer School (Lauro et al, eds.), ISI, Voorburg 2000, pp. 1–75
[3] Antoch J., Hušková M.: Permutation tests for change point analysis. Statist. Probab. Lett. 53 (2001), 37–46 DOI 10.1016/S0167-7152(01)00009-8 | MR 1843339
[4] Csörgő M., Révész P.: Strong Approximations in Probability and Statistics. Academic Press, New York 1981 MR 0666546
[5] Csörgő M., Horváth L.: Limit Theorems in Change-point Analysis. Wiley, New York 1997 MR 2743035
[6] Good P.: Permutation Tests. Second edition. Springer–Verlag, New York 2000 Zbl 0942.62049
[7] Einmahl U.: A useful estimate in the multidimensional invariance principle. Probab. Theory Related Fields 76 (1987), 81–101 DOI 10.1007/BF00390277 | MR 0899446 | Zbl 0608.60029
[8] Grabovsky I., Horváth, L., Hušková M.: Limit theorems for kernel-type estimators for the time of change. J. Statist. Plann. Inference 89 (2000), 25–56 DOI 10.1016/S0378-3758(00)00100-2 | MR 1794411 | Zbl 0998.62047
[9] Horváth L.: Detecting changes in linear regressions. Statistics 26 (1995), 189–208 DOI 10.1080/02331889508802489 | MR 1365672 | Zbl 0812.62074
[10] Horváth L., Kokoszka P.: Change-point Detection with Non-parametric Regression. Report No. 313, Laboratory for Research in Statistics and Probability, Carlton University 1997 MR 1906372
[11] Hušková M.: Limit theorems for rank statistics. Statist. Probab. Lett. 32 (1997), 45–55 DOI 10.1016/S0167-7152(96)00055-7
[12] Lehmann E. L.: Theory of Point Estimation. Wadworth & Brooks/Cole, Calif. 1991 MR 1143059 | Zbl 0916.62017
[13] Leadbetter M. R., Lindgren, L., Rootzen H.: Extremes and Related Properties of Random Sequences and Processes. Springer–Verlag, New York 1983 MR 0691492 | Zbl 0518.60021
[14] Romano J. P.: Bootstrap and randomization tests of some nonparametric hypotheses. Ann. Statist. 17 (1989), 141–159 DOI 10.1214/aos/1176347007 | MR 0981441 | Zbl 0688.62031
Partner of
EuDML logo