Previous |  Up |  Next


pole-zero structure; decentralized stabilizability; expanded system; rational matrix equation
A necessary and sufficient condition for the existence of pole and zero structures in a proper rational matrix equation $T_{2} X = T_{1}$ is developed. This condition provides a new interpretation of sufficient conditions which ensure decentralized stabilizability of an expanded system. A numerical example illustrate the theoretical results.
[1] Davison E. J., Chang T. N.: Decentralized controller design using parameter optimization methods. Control Theory and Advanced Technology 2 (1986), 131–154
[2] Emani-Naeini A., Dooren P. Van: Computation of zeros of linear multivariable systems. Automatica 18 (1982), 415–430 DOI 10.1016/0005-1098(82)90070-X | MR 0667559
[3] Ikeda M.: Decentralized control of large scale systems. In: Three Decades of Mathematical System Theory (H. Nijmeijer and J. M Schumacher, eds., Lecture Notes in Control and Information Sciences 135), Springer–Verlag, Berlin – Heidelberg – New York 1989 MR 1025792 | Zbl 0683.93009
[4] Kailath T.: Linear Systems. Prentice–Hall, Englewood Cliffs, N.J. 1980 MR 0569473 | Zbl 0870.93013
[5] Siljak D. D.: Large-Scale Dynamic Systems: Stability and Structure. North–Holland, New York 1978 MR 0595867 | Zbl 0384.93002
[6] Tan X. L., Ikeda M.: Decentralized stabilization for expanding construction of large scale systems. IEEE Trans. Automat. Control 35 (1990), 644–651 DOI 10.1109/9.53543 | MR 1055494 | Zbl 0800.93065
[7] Unyelioglu K. A., Ozguler A. B.: Decentralized stabilization of multivariable systems using stable proper fractional approach. Communication, Control and Signal Processing (1990), 843–849
[8] Vardulakis A. I. G., Karcanias N.: On the stable exact model matching problem. Systems Control Lett. 5 (1985), 237–242 DOI 10.1016/0167-6911(85)90015-5 | MR 0784772 | Zbl 0559.93018
[9] Vidyasagar M.: Control Systems Synthesis: A Factorization Approach. M.I.T. Press, Cambridge, MA 1985 MR 0787045
Partner of
EuDML logo