Previous |  Up |  Next


Title: Möbius fitting aggregation operators (English)
Author: Kolesárová, Anna
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 3
Year: 2002
Pages: [259]-273
Summary lang: English
Category: math
Summary: Standard Möbius transform evaluation formula for the Choquet integral is associated with the $\mathbf{min}$-aggregation. However, several other aggregation operators replacing $\mathbf{min}$ operator can be applied, which leads to a new construction method for aggregation operators. All binary operators applicable in this approach are characterized by the 1-Lipschitz property. Among ternary aggregation operators all 3-copulas are shown to be fitting and moreover, all fitting weighted means are characterized. This new method allows to construct aggregation operators from simpler ones. (English)
Keyword: aggregation operator
Keyword: Choquet integral
MSC: 03E72
MSC: 28A25
MSC: 28E10
idZBL: Zbl 1265.28042
idMR: MR1944308
Date available: 2009-09-24T19:45:44Z
Last updated: 2015-03-25
Stable URL:
Reference: [1] Calvo T., DeBaets, B., Fodor J.: The functional equations of Frank and Alsina for uninorms and nullnorms.Fuzzy Sets and Systems 120 (2001), 15–24 MR 1829256
Reference: [2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: A review of aggregation operators.In: Internat. Summer School on Aggregation operators and Their Applications, AGOP’2001, Oviedo 2001 MR 1821982
Reference: [3] Calvo T., Mesiar R.: Stability of aggregation operators.In: Proc. EUSFLAT’2001, Leicester 2001 MR 1821982
Reference: [4] Chateauneuf A., Jaffray J. Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion.Math. Social Sci. 17 (1989), 263–283 Zbl 0669.90003, MR 1006179, 10.1016/0165-4896(89)90056-5
Reference: [5] Choquet G.: Theory of capacities.Ann. Inst. Fourier 5 (1953 –1954), 131–295 MR 0080760, 10.5802/aif.53
Reference: [6] Frank M.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$.Aequationes Math. 19 (1979), 194–226 Zbl 0444.39003, MR 0556722, 10.1007/BF02189866
Reference: [7] Grabisch M., Labreuche, Ch.: The Šipoš integral for the aggregation of interacting bipolar criteria.In: Proc. IPMU’2000, vol. I, Madrid, pp. 395–401
Reference: [8] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty, and Information.Prentice Hall, Englewood Cliffs, N.J. 1988 Zbl 0675.94025, MR 0930102
Reference: [9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [10] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators.In: Proc. AGOP’2001, Oviedo 2001, pp. 71–76
Reference: [11] Mesiar R.: A note to the Choquet integral.Tatra Mountains Math. Publ. 12 (1997), 241–245 Zbl 0949.28013, MR 1607138
Reference: [12] Nelsen R. B.: An Introduction to Copulas.(Lecture Notes in Statistics 139.) Springer, Berlin 1999 Zbl 1152.62030, MR 1653203, 10.1007/978-1-4757-3076-0
Reference: [13] Pap E.: Null–additive Set Functions.Kluwer, Dordrecht 1995 Zbl 1003.28012, MR 1368630
Reference: [14] Radojević D.: Logical measure of continual logical functions.In: Proc. IPMU’2000, vol. I, Madrid 2000, pp. 574–581
Reference: [15] Wang Z., Klir G. J.: Fuzzy Measure Theory.Plenum Press, New York 1992 Zbl 0812.28010, MR 1212086


Files Size Format View
Kybernetika_38-2002-3_4.pdf 1.649Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo