Previous |  Up |  Next


aggregation operator; Choquet integral
Standard Möbius transform evaluation formula for the Choquet integral is associated with the $\mathbf{min}$-aggregation. However, several other aggregation operators replacing $\mathbf{min}$ operator can be applied, which leads to a new construction method for aggregation operators. All binary operators applicable in this approach are characterized by the 1-Lipschitz property. Among ternary aggregation operators all 3-copulas are shown to be fitting and moreover, all fitting weighted means are characterized. This new method allows to construct aggregation operators from simpler ones.
[1] Calvo T., DeBaets, B., Fodor J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets and Systems 120 (2001), 15–24 MR 1829256
[2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: A review of aggregation operators. In: Internat. Summer School on Aggregation operators and Their Applications, AGOP’2001, Oviedo 2001 MR 1821982
[3] Calvo T., Mesiar R.: Stability of aggregation operators. In: Proc. EUSFLAT’2001, Leicester 2001 MR 1821982
[4] Chateauneuf A., Jaffray J. Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Social Sci. 17 (1989), 263–283 DOI 10.1016/0165-4896(89)90056-5 | MR 1006179 | Zbl 0669.90003
[5] Choquet G.: Theory of capacities. Ann. Inst. Fourier 5 (1953 –1954), 131–295 DOI 10.5802/aif.53 | MR 0080760
[6] Frank M.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 DOI 10.1007/BF02189866 | MR 0556722 | Zbl 0444.39003
[7] Grabisch M., Labreuche, Ch.: The Šipoš integral for the aggregation of interacting bipolar criteria. In: Proc. IPMU’2000, vol. I, Madrid, pp. 395–401
[8] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Englewood Cliffs, N.J. 1988 MR 0930102 | Zbl 0675.94025
[9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[10] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators. In: Proc. AGOP’2001, Oviedo 2001, pp. 71–76
[11] Mesiar R.: A note to the Choquet integral. Tatra Mountains Math. Publ. 12 (1997), 241–245 MR 1607138 | Zbl 0949.28013
[12] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, Berlin 1999 DOI 10.1007/978-1-4757-3076-0 | MR 1653203 | Zbl 1152.62030
[13] Pap E.: Null–additive Set Functions. Kluwer, Dordrecht 1995 MR 1368630 | Zbl 1003.28012
[14] Radojević D.: Logical measure of continual logical functions. In: Proc. IPMU’2000, vol. I, Madrid 2000, pp. 574–581
[15] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York 1992 MR 1212086 | Zbl 0812.28010
Partner of
EuDML logo