Previous |  Up |  Next

Article

Title: States on unital partially-ordered groups (English)
Author: Dvurečenskij, Anatolij
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 3
Year: 2002
Pages: [297]-318
Summary lang: English
.
Category: math
.
Summary: We study states on unital po-groups which are not necessarily commutative as normalized positive real-valued group homomorphisms. We show that in contrast to the commutative case, there are examples of unital po-groups having no state. We introduce the state interpolation property holding in any Abelian unital po-group, and we show that it holds in any normal-valued unital $\ell $-group. We present a connection among states and ideals of po-groups, and we describe extremal states on the state space of unital po-groups. (English)
Keyword: non-commutative group
Keyword: partially ordered groups
MSC: 06B10
MSC: 06F15
idZBL: Zbl 1265.06052
idMR: MR1944311
.
Date available: 2009-09-24T19:46:07Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135465
.
Reference: [1] Bigard A., Keimel K., Wolfenstein S.: Groupes et Anneax Réticulés.Springer–Verlag, Berlin – Heidelberg – New York 1981
Reference: [2] Birkhoff G.: Lattice theory.Amer. Math. Soc. Colloq. Publ. 25 (1967) Zbl 0153.02501, MR 0227053
Reference: [3] Chovanec F.: States and observables on MV-algebras.Tatra Mountains Math. Publ. 3 (1993), 55–65 Zbl 0799.03074, MR 1278519
Reference: [4] Nola A. Di, Georgescu G., Iorgulescu A.: Pseudo-BL-algebras, I, II.Multi. Val. Logic, to appear
Reference: [5] Dvurečenskij A.: Pseudo MV-algebras are intervals in $\ell $-groups.J. Austral. Math. Soc. 72 (2002), to appear Zbl 1027.06014, MR 1902211, 10.1017/S1446788700036806
Reference: [6] Dvurečenskij A.: States on pseudo MV-algebras.Studia Logica 68 (2001), 301–327 Zbl 1081.06010, MR 1865858, 10.1023/A:1012490620450
Reference: [7] Dvurečenskij A.: States and idempotents of pseudo MV-algebras.Tatra Mountains. Math. Publ. 22 (2001), 79–89 Zbl 0997.03050, MR 1889036
Reference: [8] Dvurečenskij A., Kalmbach G.: States on pseudo MV-algebras and the hull-kernel topology.Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 131–146 Zbl 1096.06009, MR 1910782
Reference: [9] Dvurečenskij A., Vetterlein T.: Pseudoeffect algebras.I. Basic properties. Internat. J. Theoret. Phys. 40 (2001), 685–701 Zbl 1092.03034, MR 1831592, 10.1023/A:1004192715509
Reference: [10] Dvurečenskij A., Vetterlein T.: Pseudoeffect algebras.II. Group representations. Interat. J. Theoret. Phys. 40 (2001), 703–726 Zbl 1092.03034, MR 1831593, 10.1023/A:1004144832348
Reference: [11] Dvurečenskij A., Vetterlein T.: Congruences and states on pseudo-effect algebras.Found. Phys. Lett. 14 (2001), 425–446 MR 1857794, 10.1023/A:1015561420306
Reference: [12] Fuchs L.: Partially Ordered Algebraic Systems.Pergamon Press, Oxford – London – New York – Paris 1963 Zbl 0137.02001, MR 0171864
Reference: [13] Georgescu G.: Bosbach states on pseudo-BL algebras.Soft Computing, to appear
Reference: [14] Georgescu G., Iorgulescu A.: Pseudo-MV algebras.Multi Valued Logic 6 (2001), 95–135 Zbl 1014.06008, MR 1817439
Reference: [15] Goodearl K. R.: Partially Ordered Abelian Groups with Interpolation.(Math. Surveys Monographs 20), Amer. Math. Soc., Providence, Rhode Island 1986 Zbl 0589.06008, MR 0845783
Reference: [16] Mundici D.: Averaging the truth-value in Łukasiewicz logic.Studia Logica 55 (1995), 113–127 Zbl 0836.03016, MR 1348840, 10.1007/BF01053035
Reference: [17] Rachůnek J.: A non-commutative generalization of MV-algebras.Czechoslovak Math. J. 52 (2002), 255–273 Zbl 1012.06012, 10.1023/A:1021766309509
.

Files

Files Size Format View
Kybernetika_38-2002-3_7.pdf 2.803Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo