Previous |  Up |  Next

Article

Title: Convergence theorems for measures with values in Riesz spaces (English)
Author: Candeloro, Domenico
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 3
Year: 2002
Pages: [287]-295
Summary lang: English
.
Category: math
.
Summary: In some recent papers, results of uniform additivity have been obtained for convergent sequences of measures with values in $l$-groups. Here a survey of these results and some of their applications are presented, together with a convergence theorem involving Lebesgue decompositions. (English)
Keyword: convergence theorem
Keyword: Riesz space
Keyword: Lebesgue decomposition
MSC: 28B15
MSC: 46G10
idZBL: Zbl 1265.46069
idMR: MR1944310
.
Date available: 2009-09-24T19:45:59Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135464
.
Reference: [1] Boccuto A.: Vitali–Hahn–Saks and Nikodým theorems for means with values in Riesz spaces.Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 157–173 Zbl 0864.28003, MR 1405238
Reference: [2] Boccuto A.: Dieudonné-type theorems for means with values in Riesz spaces.Tatra Mountains Math. Publ. 8 (1996), 29–42 Zbl 0918.28009, MR 1475257
Reference: [3] Boccuto A., Candeloro D.: Uniform $s$-boundedness and convergence results for measures with values in complete l-groups.J. Math. Anal. Appl. 265 (2002), 170–194 Zbl 1006.28012, MR 1874264, 10.1006/jmaa.2001.7715
Reference: [4] Boccuto A., Candeloro D.: Vitali and Schur-type theorems for Riesz-space-valued set functions.Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 85–103 Zbl 1096.28006, MR 1910780
Reference: [5] Boccuto A., Candeloro D.: Dieudonné-type theorems for set functions with values in $(l)$-groups.Real Anal. Exchange, to appear Zbl 1067.28011, MR 1922663
Reference: [6] Brooks J. K.: On the Vitali-Hahn-Saks and Nikodým theorems.Proc. Nat. Acad. Sci. U. S. A. 64 (1969), 468–471 Zbl 0188.35604, MR 0268343, 10.1073/pnas.64.2.468
Reference: [7] Brooks J. K.: Equicontinuous sets of measures and applications to Vitali’s integral convergence theorem and control measures.Adv. in Math. 10 (1973), 165–171 Zbl 0249.28009, MR 0320268, 10.1016/0001-8708(73)90104-7
Reference: [8] Brooks J. K.: On a theorem of Dieudonné.Adv. in Math. 36 (1980), 165–168 Zbl 0441.28006, MR 0574646, 10.1016/0001-8708(80)90014-6
Reference: [9] Candeloro D., Letta G.: Sui teoremi di Vitali–Hahn–Saks e di Dieudonné.Rend. Accad. Naz. Sci. XL 9 (1985), 203–213 MR 0899250
Reference: [10] Inglesias M. Congost: Medidas y probabilidades en estructuras ordenadas.Stochastica 5 (1981), 45–48 MR 0625841
Reference: [11] Dieudonné J.: Sur la convergence des suites de mesures de Radon.An. Acad. Brasil. Cienc. 23 (1951), 21–38; 277–282 Zbl 0044.12004, MR 0042496
Reference: [12] Nikodým O.: Sur les suites convergentes de fonctions parfaitement additives d’ensemble abstrait.Monatsc. Math. 40 (1933), 427–432 Zbl 0008.25003, MR 1550217, 10.1007/BF01708880
Reference: [13] Luxemburg W. A. J., Zaanen A. C.: Riesz Spaces, I.North–Holland, Amsterdam 1971
Reference: [14] Riečan B., Neubrunn T.: Integral, Measure and Ordering.Kluwer Academic Publishers / Ister Science, Bratislava 1997 Zbl 0916.28001, MR 1489521
Reference: [15] Schmidt K.: Decompositions of vector measures in Riesz spaces and Banach lattices.Proc. Edinburgh Math. Soc. 29 (1986), 23–39 Zbl 0569.28011, MR 0829177
.

Files

Files Size Format View
Kybernetika_38-2002-3_6.pdf 1.036Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo