Previous |  Up |  Next


compensator; stabilization
The polynomial matrix equation $X_lD_r$ $+$ $Y_lN_r$ $=$ $D_k$ is solved for those $X_l$ and $Y_l$ that give proper transfer functions $X_l^{-1}Y_l$ characterizing a subclass of compensators, contained in the class whose arbitrary element can be cascaded to a plant with the given strictly proper transfer function $N_rD_r^{-1}$ such that wrapping the negative unity feedback round the cascade gives a system whose poles are specified by $D_k$. The subclass is navigated and extracted through a conventional parametrization whose denominators are affine to row echelon form and the centre is in a compensator whose numerator has minimum column degrees. Applications include stabilization of linear multivariable systems.
[1] Callier F. M.: Proper feedback compensators for a strictly proper plant by solving polynomial equations. In: Proc. MMAR 2000. Miedzyzdroje 2000, pp. 55–59
[2] Callier F. M.: Polynomial equations giving a proper feedback compensator for a strictly proper plant. In: Proc. 1st IFAC Symposium on System Structure and Control, Prague 2001
[3] Callier F. M., Desoer C. A.: Multivariable Feedback Systems. Springer, New York 1982
[4] Forney G. D.: Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control 13 (1975), 493–520 DOI 10.1137/0313029 | MR 0378886 | Zbl 0269.93011
[5] Golub G. H., Loan C. F. Van: Matrix Computations. North Oxford Academic, Oxford 1989
[6] Kailath T.: Linear Systems. Prentice Hall, Englewood Cliffs, N. J. 1980 MR 0569473 | Zbl 0870.93013
[7] Kučera V., Zagalak P.: Proper solutions of polynomial equations. In: Proc. IFAC World Congress, Pergamon, Oxford 1999, pp. 357–362
[8] MacDuffee C. C.: The Theory of Matrices. Springer, Berlin 1933 Zbl 0007.19507
[9] Popov V. M.: Some properties of the control systems with irreducible matrix transfer functions. (Lecture Notes in Mathematics 144.) Springer, Berlin 1969, pp. 169–180 DOI 10.1007/BFb0059934 | MR 0395958
[10] Rosenbrock H. H.: State-space and Multivariable Theory. Nelson, London 1970 MR 0325201 | Zbl 0246.93010
[11] Rosenbrock H. H., Hayton G. E.: The general problem of pole assignment. Internat. J. Control 27 (1978), 837–852 DOI 10.1080/00207177808922416 | MR 0497005 | Zbl 0403.93017
[12] Dooren P. M. Van: The generalized eigenstructure problem in linear system theory. IEEE Trans. Automat. Control AC-26 (1981), 111–129 DOI 10.1109/TAC.1981.1102559 | MR 0609253
[13] Vidyasagar M.: Control System Synthesis. MIT Press, Cambridge, MA 1985 MR 0787045 | Zbl 0655.93001
[14] Wang S. H., Davison E. J.: A minimization algorithm for the design of linear multivariable systems. IEEE Trans. Automat. Control AC-18 (1973), 220–225 DOI 10.1109/TAC.1973.1100283 | MR 0441434 | Zbl 0261.93010
[15] Wedderburn J.: Lectures on Matrices. American Mathematical Society, Providence, R.I. 1934 Zbl 0176.30501
[16] Wolovich W. A.: Linear Multivariable Systems. Springer, New York 1974 MR 0359881 | Zbl 0534.93026
[17] Zagalak P., Kučera V.: The general problem of pole assignment: a polynomial approach. IEEE Trans. Automat. Control AC-30 (1985), 286–289 DOI 10.1109/TAC.1985.1103920 | MR 0778436
Partner of
EuDML logo