Title:
|
Approximation of control laws with distributed delays: a necessary condition for stability (English) |
Author:
|
Mondié, Sabine |
Author:
|
Dambrine, Michel |
Author:
|
Santos, Omar |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
38 |
Issue:
|
5 |
Year:
|
2002 |
Pages:
|
[541]-551 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The implementation of control laws with distributed delays that assign the spectrum of unstable linear multivariable systems with delay in the input requires an approximation of the integral. A necessary condition for stability of the closed-loop system is shown to be the stability of the controller itself. An illustrative multivariable example is given. (English) |
Keyword:
|
linear multivariable system with delay |
Keyword:
|
stability |
MSC:
|
93C23 |
MSC:
|
93C35 |
MSC:
|
93D05 |
MSC:
|
93D15 |
idZBL:
|
Zbl 1265.93148 |
idMR:
|
MR1966944 |
. |
Date available:
|
2009-09-24T19:48:35Z |
Last updated:
|
2015-03-25 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135485 |
. |
Reference:
|
[1] Artstein Z.: Linear systems with delayed controls: a reduction.IEEE Trans. Automat. Control AC-27 (1982), 4, 869–879 Zbl 0486.93011, MR 0680488, 10.1109/TAC.1982.1103023 |
Reference:
|
[2] Brethé D., Loiseau J. J.: An effective algorithm for finite spectrum assignment of single-input systems with delays.Math. Comput. Simulation 45 (1998), 339–348 Zbl 1017.93506, MR 1622412, 10.1016/S0378-4754(97)00113-4 |
Reference:
|
[3] Bellman R., Cooke K. L.: Differential Difference Equations.Academic Press, London 1963 Zbl 0163.10501, MR 0147745 |
Reference:
|
[4] Engelborghs K., Dambrine, M., Roose D.: Limitations of a class of stabilization methods for delay systems.IEEE Trans. Automat. Control AC-46 (2001), 2, 336–339 Zbl 1056.93607, MR 1814584, 10.1109/9.905705 |
Reference:
|
[5] Gantmacher F. R.: The Theory of Matrices.Vol. 1. AMS Chelsea Publishing, New York 1959 Zbl 0927.15002, MR 0107649 |
Reference:
|
[6] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable bezout factorizations and feedback control of linear time delay systems.Internat. J. Control 43 (1986), 3, 837–857 Zbl 0599.93047, MR 0828360, 10.1080/00207178608933506 |
Reference:
|
[7] Kolmanovski V. B., Nosov V. R.: Stability of Functional Differential Equations.Academic Press, New York 1986 MR 0860947 |
Reference:
|
[8] Manitius A. Z., Olbrot A. W.: Finite spectrum assignment problem for systems with delays.IEEE Trans. Automat. Control AC-24 (1979), 4, 541–553 Zbl 0425.93029, MR 0538808, 10.1109/TAC.1979.1102124 |
Reference:
|
[9] Mathews J. H.: Numerical Methods for Mathematics, Science, and Engineering.Prentice–Hall, Englewood Cliffs, N.J. 1992 Zbl 0753.65002 |
Reference:
|
[10] Mondié S., Santos O.: Une condition nécessaire pour l’implantation de lois de commande à retards distribués.In: Conférence Internationale Francophone d’Automatique, Lille 2000, pp. 201–206 |
Reference:
|
[11] Morse A. S.: Ring models for delay-differential systems.Automatica 12 (1976), 529–531 Zbl 0345.93023, MR 0437162, 10.1016/0005-1098(76)90013-3 |
Reference:
|
[12] Palmor Z. J.: Modified predictors.In: The Control Handbook (W. Levine, ed.), CRC Press, Boca Raton 1996, Section 10.9 |
Reference:
|
[13] Santos O., Mondié S.: Control laws involving distributed time delays: robustness of the implementation.In: American Control Conference, Chicago 2000, pp. 2479–2480 |
Reference:
|
[14] Smith O. J. M.: Closer control of loops with dead time.Chem. Engrg. Prog. 53 (1959), 217–219 |
Reference:
|
[15] Assche V. Van, Dambrine M., Lafay J. F., Richard J. P.: Some problems arising in the implementation of distributed-delay control laws.In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999 |
Reference:
|
[16] Vidyasagar M.: Control System Synthesis.MIT Press, Cambridge, MA 1985 Zbl 0655.93001, MR 0787045 |
Reference:
|
[17] Watanabe K., Ito M.: A process model control for linear systems with delay.IEEE Trans. Automat. Control AC-26 (1981), 6, 1261–1268 Zbl 0471.93035, 10.1109/TAC.1981.1102802 |
. |