Previous |  Up |  Next

Article

Title: Approximation of control laws with distributed delays: a necessary condition for stability (English)
Author: Mondié, Sabine
Author: Dambrine, Michel
Author: Santos, Omar
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 5
Year: 2002
Pages: [541]-551
Summary lang: English
.
Category: math
.
Summary: The implementation of control laws with distributed delays that assign the spectrum of unstable linear multivariable systems with delay in the input requires an approximation of the integral. A necessary condition for stability of the closed-loop system is shown to be the stability of the controller itself. An illustrative multivariable example is given. (English)
Keyword: linear multivariable system with delay
Keyword: stability
MSC: 93C23
MSC: 93C35
MSC: 93D05
MSC: 93D15
idZBL: Zbl 1265.93148
idMR: MR1966944
.
Date available: 2009-09-24T19:48:35Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135485
.
Reference: [1] Artstein Z.: Linear systems with delayed controls: a reduction.IEEE Trans. Automat. Control AC-27 (1982), 4, 869–879 Zbl 0486.93011, MR 0680488, 10.1109/TAC.1982.1103023
Reference: [2] Brethé D., Loiseau J. J.: An effective algorithm for finite spectrum assignment of single-input systems with delays.Math. Comput. Simulation 45 (1998), 339–348 Zbl 1017.93506, MR 1622412, 10.1016/S0378-4754(97)00113-4
Reference: [3] Bellman R., Cooke K. L.: Differential Difference Equations.Academic Press, London 1963 Zbl 0163.10501, MR 0147745
Reference: [4] Engelborghs K., Dambrine, M., Roose D.: Limitations of a class of stabilization methods for delay systems.IEEE Trans. Automat. Control AC-46 (2001), 2, 336–339 Zbl 1056.93607, MR 1814584, 10.1109/9.905705
Reference: [5] Gantmacher F. R.: The Theory of Matrices.Vol. 1. AMS Chelsea Publishing, New York 1959 Zbl 0927.15002, MR 0107649
Reference: [6] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable bezout factorizations and feedback control of linear time delay systems.Internat. J. Control 43 (1986), 3, 837–857 Zbl 0599.93047, MR 0828360, 10.1080/00207178608933506
Reference: [7] Kolmanovski V. B., Nosov V. R.: Stability of Functional Differential Equations.Academic Press, New York 1986 MR 0860947
Reference: [8] Manitius A. Z., Olbrot A. W.: Finite spectrum assignment problem for systems with delays.IEEE Trans. Automat. Control AC-24 (1979), 4, 541–553 Zbl 0425.93029, MR 0538808, 10.1109/TAC.1979.1102124
Reference: [9] Mathews J. H.: Numerical Methods for Mathematics, Science, and Engineering.Prentice–Hall, Englewood Cliffs, N.J. 1992 Zbl 0753.65002
Reference: [10] Mondié S., Santos O.: Une condition nécessaire pour l’implantation de lois de commande à retards distribués.In: Conférence Internationale Francophone d’Automatique, Lille 2000, pp. 201–206
Reference: [11] Morse A. S.: Ring models for delay-differential systems.Automatica 12 (1976), 529–531 Zbl 0345.93023, MR 0437162, 10.1016/0005-1098(76)90013-3
Reference: [12] Palmor Z. J.: Modified predictors.In: The Control Handbook (W. Levine, ed.), CRC Press, Boca Raton 1996, Section 10.9
Reference: [13] Santos O., Mondié S.: Control laws involving distributed time delays: robustness of the implementation.In: American Control Conference, Chicago 2000, pp. 2479–2480
Reference: [14] Smith O. J. M.: Closer control of loops with dead time.Chem. Engrg. Prog. 53 (1959), 217–219
Reference: [15] Assche V. Van, Dambrine M., Lafay J. F., Richard J. P.: Some problems arising in the implementation of distributed-delay control laws.In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
Reference: [16] Vidyasagar M.: Control System Synthesis.MIT Press, Cambridge, MA 1985 Zbl 0655.93001, MR 0787045
Reference: [17] Watanabe K., Ito M.: A process model control for linear systems with delay.IEEE Trans. Automat. Control AC-26 (1981), 6, 1261–1268 Zbl 0471.93035, 10.1109/TAC.1981.1102802
.

Files

Files Size Format View
Kybernetika_38-2002-5_4.pdf 1.446Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo