Previous |  Up |  Next

Article

Title: Disturbance decoupling of nonlinear MISO systems by static measurement feedback (English)
Author: Pothin, Richard
Author: Moog, Claude H.
Author: Xia, Xiaohua
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 5
Year: 2002
Pages: [601]-608
Summary lang: English
.
Category: math
.
Summary: This paper highlights the role of the rank of a differential one-form in the solution of such nonlinear control problems via measurement feedback as disturbance decoupling problem of multi-input single output (MISO) systems. For the later problem, some necessary conditions and sufficient conditions are given. (English)
Keyword: nonlinear control
Keyword: decoupling
MSC: 93B11
MSC: 93B15
MSC: 93C10
MSC: 93C73
MSC: 93D15
idZBL: Zbl 1265.93185
idMR: MR1966948
.
Date available: 2009-09-24T19:49:05Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135489
.
Reference: [1] Andiarti R., Moog C. H.: Output feedback disturbance decoupling in nonlinear systems.IEEE Trans. Automat. Control 41 (1996), 1683–1689 Zbl 0863.93039, MR 1419696, 10.1109/9.544009
Reference: [2] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A.: Exterior Differential Systems.Springer–Verlag, New York 1991 Zbl 0726.58002, MR 1083148
Reference: [3] Conte G., Moog C. H., Perdon A. M.: Nonlinear Control Systems: An Algebraic Setting.(Lecture Notes in Control and Information Science 242.) Springer–Verlag, London 1999 Zbl 0920.93002, MR 1687965, 10.1007/3-540-48443-4
Reference: [4] Hermes H.: Involutive subdistributions and canonical forms for distributions and control systems.In: Theory and Applications of Nonlinear Control Systems (C. I. Byrnes and A. Lindquist, eds.), North–Holland, Amsterdam 1986, pp. 123–135 Zbl 0621.93023, MR 0935372
Reference: [5] Huijberts H. J. C., Colpier, L., Moreau P.: Nonlinear input-output decoupling by static output feedback.In: Proc. 3rd European Control Conference (EEC’95), Rome 1995, pp. 1057–1062
Reference: [6] Isidori A.: Nonlinear Control Systems.Second edition. Springer–Verlag, Berlin 1989 Zbl 0931.93005, MR 1015932
Reference: [7] Isidori A., Krener A. J., Giorgi, C. Gori, Monaco S.: Nonlinear decoupling via feedback: a differential geometric approach.IEEE Trans. Automat. Control 26 (1981), 331–345 Zbl 0481.93037, MR 0613540, 10.1109/TAC.1981.1102604
Reference: [8] Nijmeijer H., Schaft A. J. van der: Nonlinear dynamical control systems.Springer–Verlag, New York 1990 MR 1047663
Reference: [9] Xia X., Moog C. H.: Disturbance decoupling by measurement feedback for SISO nonlinear systems.IEEE Trans. Automat. Control 44 (1999), 1425–1429 Zbl 0954.93016, MR 1697431, 10.1109/9.774115
.

Files

Files Size Format View
Kybernetika_38-2002-5_8.pdf 870.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo