Previous |  Up |  Next

Article

Title: Systems with associative dynamics (English)
Author: Pearson, Ronald Korin
Author: Kotta, Ülle
Author: Nōmm, Sven
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 5
Year: 2002
Pages: [585]-600
Summary lang: English
.
Category: math
.
Summary: This paper introduces a class of nonlinear discrete-time dynamic models that generalize familiar linear model structures; our motivation is to explore the extent to which known results for the linear case do or do not extend to this nonlinear class. The results presented here are based on a complete characterization of the solution of the associative functional equation $F[F(x,y),z] = F[x,F(y,z)]$ due to J. Aczel, leading to a class of invertible binary operators that includes addition, multiplication, and infinitely many others. We present some illustrative examples of these dynamic models, give a simple explicit representation for their inverses, and present sufficient conditions for bounded-input, bounded-output stability. Finally, we propose a generalization of this model class and we demonstrate that these models have classical state-space realizations, unlike arbitrarily structured NARMA models. (English)
Keyword: nonlinear discrete-time dynamic model
Keyword: stability
MSC: 93C10
MSC: 93C55
idZBL: Zbl 1265.93178
idMR: MR1966947
.
Date available: 2009-09-24T19:48:57Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135488
.
Reference: [1] Aczel J.: A Short Course on Functional Equations.Reidel, Dordrecht 1987 Zbl 0607.39002, MR 0875412
Reference: [2] Aczel J., Dhombres J.: Functional Equations in Several Variables.Cambridge University Press, Cambridge 1989 Zbl 1139.39043, MR 1004465
Reference: [3] Brockwell P. J., Davis R. A.: Time Series: Theory and Methods.Springer–Verlag, New York 1991 Zbl 1169.62074, MR 1093459
Reference: [4] Cohen G., Gaubert, S., Quadrat J.-P.: Max-plus algebra and system theory: Where we are and where to go.Annual Reviews in Control 23 (1999), 207–219 10.1016/S1367-5788(99)90091-3
Reference: [5] Doyle F. J., Henson M. A.: Nonlinear systems theory.In: Nonlinear Process Controll (M. A. Hanson and D. E. Seborg, eds.), Prentice–Hall, Englewood Cliffs, N.J. 1997, pp. 111–147
Reference: [6] Elaydi S. N.: An Introduction to Difference Equations.Springer–Verlag, New York 1996 Zbl 1071.39001, MR 1410259
Reference: [7] Farina L., Rinaldi S.: Positive Linear Systems: Theory and Applications.Wiley, New York 2000 Zbl 0988.93002, MR 1784150
Reference: [8] Kotta Ü., Sadegh N.: Two approaches for state space realization of NARMA models: bridging the gap.In: Proc. 3rd IMACS Conference “Mathmod” (I. Troch and F. Breitenecker, eds.), Vienna 2000, pp. 415–419 Zbl 1004.93008
Reference: [9] Kotta Ü., Zinober A. S. I., Nõmm S.: On realizability of bilinear input-output models.In: Proc. 3rd International Conference on Control Theory and Applications “ICCTA’01”, Pretoria 2001
Reference: [10] Kwakernaak H., Sivan R.: Linear Optimal Control Systems.Wiley, New York 1972 Zbl 0276.93001, MR 0406607
Reference: [11] Ljung L.: System Identification: Theory for the User.Prentice–Hall, Englewood Cliffs, N.J. 1999 Zbl 0615.93004
Reference: [12] Oppenheim A. V., Schafer R. W.: Digital Signal Processing, Prentice-Hall, Englewood Cliffs, N.J. 1975
Reference: [13] Pearson R. K.: Discrete-Time Dynamic Models.Oxford Univ. Press, Oxford – New York 1999 Zbl 0966.93004
Reference: [14] Pearson R. K., Pottmann M.: Combining linear dynamics and static nonlinearities.In: Proc. ADCHEM 2000, Pisa 2000, pp. 485–490
Reference: [15] Pearson R. K., Kotta Ü.: Associative dynamic models.In: Proc. 1st IFAC Symposium on System Structure and Control, Prague 2001
Reference: [16] Pitas I., Venetsanopoulos A. N.: Nonlinear mean filters in image processing.IEEE Trans. Acoustics Speach Signal Processing 34 (1986), 573–584 10.1109/TASSP.1986.1164857
Reference: [17] Qin S. J., Badqwell T. A.: An overview of nonlinear model predictive control applications.In: International Symposium on Nonlinear Model Predictive Control: Assessment and Future Directions (F. Allgöwer and A. Zheng, eds.), Ascona 1989, pp. 128–145
Reference: [18] Thomson D. J.: Spectrum estimation techniques for characterization and development of wt4 waveguide.Bell Syst. Tech. J. 56 (1977), 1769–1815 10.1002/j.1538-7305.1977.tb00591.x
Reference: [19] Kotta Ü., Sadegh N.: Two approaches for state space realization of NARMA models: bridging the gap.In: Proc. 3rd IMACS Conference “Mathmod” (I. Troch and F. Breitenecker, eds.), Vienna 2000, pp. 415–419 Zbl 1004.93008
Reference: [20] Verriest E. I.: Linear systems over projective fields.In: Proc. 5th IFAC Symposium on Nonlinear Control Systems “NOLCOS’01”, Saint-Petersburg 2001, pp. 207–212
Reference: [21] Pearson R. K., Kotta Ü.: Associative dynamic models.In: Proc. 1st IFAC Symposium on System Structure and Control, Prague 2001
Reference: [22] Kotta Ü., Zinober A. S. I., Nõmm S.: On realizability of bilinear input-output models.In: Proc. 3rd International Conference on Control Theory and Applications “ICCTA’01”, Pretoria 2001
.

Files

Files Size Format View
Kybernetika_38-2002-5_7.pdf 2.163Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo