Full entry |
PDF
(3.6 MB)
Feedback

input set; output set; controllability; observability

References:

[2] Forney G. D.: **Minimal bases of rational vector spaces with applications to multivariable systems**. SIAM J. Control 13 (1975), 493–520 DOI 10.1137/0313029 | MR 0378886

[3] Gantmacher G.: **Theory of Matrices**. Volume 2. Chelsea, New York 1959 Zbl 0927.15002

[4] Georgiou A., Floudas C. A.: **Structural analysis and synthesis of feasible control systems: Theory and applications**. Chem. Eng. J. 67 (1989), 600–618

[5] Govind R., Powers G. J.: **Control systems synthesis strategies**. AIChE J. 28 (1982), 60–73 DOI 10.1002/aic.690280110

[6] Kailath T.: **Linear Systems**. Prentice Hall, Englewood Cliffs, N.J. 1980 MR 0569473 | Zbl 0870.93013

[7] Karcanias N.: **Global process instrumentation: Issues and problems of a system and control theory framework**. Measurement 14 (1994), 103–113 DOI 10.1016/0263-2241(94)90048-5

[8] Karcanias N.: **Control problems in global process instrumentation: A structural approach**. In: Proc. ESCAPE-6, Comput. Chem. Eng. 20 (1996), 1101–1106

[9] Karcanias N., Giannakopoulos C.: **Necessary and sufficient conditions for zero assignment by constant squaring down**. Linear Algebra Appl. 122–124 (1989), 415–446 MR 1019995 | Zbl 0679.93012

[10] Karcanias N., Hayton G. E.: **State-space and transfer function invariant infinite zeros: A unified approach**. In: Proc. 1981 Joint Automatic Control Conference, Univ. of Virginia, Charlottesville 1981, Paper TA–4C

[11] Karcanias N., Kalogeropoulos G.: **On the Segre, Weyr characteristics of right (left) regular pencils**. Internat. J. Control 44 (1986), 991–1015 DOI 10.1080/00207178608933647 | MR 0855803

[12] Karcanias N., Kouvaritakis B.: **The output zeroing problem and its relationship to the invariant zero structure**. Internat. J. Control 30 (1979), 395–415 DOI 10.1080/00207177908922783 | MR 0543563 | Zbl 0434.93018

[13] Marcus M., Minc H.: **A Survey of Matrix Theory and Matrix Inequalities**. Allyn and Bacon, Boston 1964 MR 0162808 | Zbl 0247.15002

[14] Mitrouli M., Karcanias N.: **Computation of the GCD of polynomials using Gaussian transformations and shifting**. Internat. J. Control 58 (1993), 211–228 DOI 10.1080/00207179308922998 | MR 1222144 | Zbl 0777.93053

[15] Morari M.: **Effect of design on the controllability of chemical plants**. In: Proc. IFAC Workshop on Interaction between Process Design and Process Control, Imperial College 1992, pp. 3–16

[16] Morari M., Stephanopoulos G.: **Studies in the synthesis of control structures for chemical processes: Part II: Structural aspects and the synthesis of alternative feasible control schemes**. AIChE J. 26 (1980), 232–246 DOI 10.1002/aic.690260206 | MR 0564126

[17] Rijnsdorp J. E.: **Integrated Process Control and Automation**. Elsevier, Amsterdam 1991

[18] Rosenbrock H. H.: **State–Space and Multivariable Theory**. Nelson, London 1970 MR 0325201 | Zbl 0246.93010

[19] Skogestad S., Postlethwaite I.: **Multivariable Feedback Control**. Wiley, Chichester 1996 Zbl 0883.93001

[20] Vardulakis A. I. G., Karcanias N.: **Relation between strict equivalence invariants and structure at infinity of matrix pencils**. IEEE Trans. Automat. Control AC–28 (1983), 99, 514–516 DOI 10.1109/TAC.1983.1103254 | MR 0712782

[21] Warren M. E., Eckberg A. E.: **On the dimensions of controllability subspaces: A characterisation via polynomial matrices and Kronecker invariants**. SIAM J. Control Optim. 13 (1975), 434–445 DOI 10.1137/0313026 | MR 0385683