[2] Forney G. D.: 
Minimal bases of rational vector spaces with applications to multivariable systems. SIAM J. Control 13 (1975), 493–520 
DOI 10.1137/0313029 | 
MR 0378886 
[3] Gantmacher G.: 
Theory of Matrices. Volume 2. Chelsea, New York 1959 
Zbl 0927.15002 
[4] Georgiou A., Floudas C. A.: Structural analysis and synthesis of feasible control systems: Theory and applications. Chem. Eng. J. 67 (1989), 600–618
[7] Karcanias N.: 
Global process instrumentation: Issues and problems of a system and control theory framework. Measurement 14 (1994), 103–113 
DOI 10.1016/0263-2241(94)90048-5 
[8] Karcanias N.: Control problems in global process instrumentation: A structural approach. In: Proc. ESCAPE-6, Comput. Chem. Eng. 20 (1996), 1101–1106
[9] Karcanias N., Giannakopoulos C.: 
Necessary and sufficient conditions for zero assignment by constant squaring down. Linear Algebra Appl. 122–124 (1989), 415–446 
MR 1019995 | 
Zbl 0679.93012 
[10] Karcanias N., Hayton G. E.: State-space and transfer function invariant infinite zeros: A unified approach. In: Proc. 1981 Joint Automatic Control Conference, Univ. of Virginia, Charlottesville 1981, Paper TA–4C
[13] Marcus M., Minc H.: 
A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston 1964 
MR 0162808 | 
Zbl 0247.15002 
[15] Morari M.: Effect of design on the controllability of chemical plants. In: Proc. IFAC Workshop on Interaction between Process Design and Process Control, Imperial College 1992, pp. 3–16
[16] Morari M., Stephanopoulos G.: 
Studies in the synthesis of control structures for chemical processes: Part II: Structural aspects and the synthesis of alternative feasible control schemes. AIChE J. 26 (1980), 232–246 
DOI 10.1002/aic.690260206 | 
MR 0564126 
[17] Rijnsdorp J. E.: Integrated Process Control and Automation. Elsevier, Amsterdam 1991
[19] Skogestad S., Postlethwaite I.: 
Multivariable Feedback Control. Wiley, Chichester 1996 
Zbl 0883.93001 
[20] Vardulakis A. I. G., Karcanias N.: 
Relation between strict equivalence invariants and structure at infinity of matrix pencils. IEEE Trans. Automat. Control AC–28 (1983), 99, 514–516 
DOI 10.1109/TAC.1983.1103254 | 
MR 0712782 
[21] Warren M. E., Eckberg A. E.: 
On the dimensions of controllability subspaces: A characterisation via polynomial matrices and Kronecker invariants. SIAM J. Control Optim. 13 (1975), 434–445 
DOI 10.1137/0313026 | 
MR 0385683