Previous |  Up |  Next

Article

Title: Erlang distributed activity times in stochastic activity networks (English)
Author: Abdelkader, Yousry H.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 3
Year: 2003
Pages: [347]-358
Summary lang: English
.
Category: math
.
Summary: It is assumed that activity times in stochastic activity networks (SANs) are independent Erlang random variable (r.v.). A recurrence method of determining the $k$th moments of the completion time is presented. Applications are provided for illustration and are used to evaluate the applicability and appropriateness of the Erlang model to represent activity network. (English)
Keyword: project planning
Keyword: PERT
Keyword: Erlang distribution
MSC: 33B99
MSC: 60E05
MSC: 90B15
MSC: 90B35
MSC: 90C35
MSC: 90C39
idZBL: Zbl 1249.90305
idMR: MR1995739
.
Date available: 2009-09-24T19:54:40Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135537
.
Reference: [1] Bendell A., Solomon, D., Carter J. M.: Evaluating project completion times when activity times are Erlang distributed.J. Opl. Res. Soc. 46 (1995), 867–882 10.1057/jors.1995.118
Reference: [2] Devroye L. P.: Inequalities for the completion times of stochastic PERT networks.Math. Oper. Res. 4 (1979), 441–447 Zbl 0427.90053, MR 0549130, 10.1287/moor.4.4.441
Reference: [3] Elmaghraby S. E.: On the expected duration of PERT type networks.Management Sci. 13 (1967), 299–306 Zbl 0158.38303, 10.1287/mnsc.13.5.299
Reference: [4] Elmaghraby S. E.: The estimation of some network parameters in PERT model of activity network: review and critique.In: Advances in Project Scheduling, Chapter I, Part III (R. Slowinski and J. Weglarz, eds.), Elsevier, Amsterdam 1989, pp. 371–432 MR 1060141
Reference: [5] Elmaghraby S. E.: On criticality and sensitivity in activity networks.European J. Oper. Res. 127 (2000), 220–238 Zbl 0990.90119, 10.1016/S0377-2217(99)00483-X
Reference: [6] Fulkerson D. R.: Expected critical path lengths in PERT networks.Oper. Res. 10 (1962), 808–817 Zbl 0124.36304, 10.1287/opre.10.6.808
Reference: [7] Kamburowski J.: Normally distributed activity durations in PERT networks.J. Opl. Res. Soc. 36 (1985), 1051–1057 Zbl 0579.90052, 10.1057/jors.1985.184
Reference: [8] Kamburowski J.: An upper bound on the expected completion time of PERT networks.European J. Oper. Res. 21 (1985), 2, 206–212 Zbl 0569.90047, MR 0811084, 10.1016/0377-2217(85)90032-3
Reference: [9] Kleinrock L.: In: Queuing Systems, Volume I.Wiley, New York 1975
Reference: [10] Kulkarni V. G., Adlakha V. G.: Markov and Markov regenerative PERT networks.Oper. Res. 34 (1986), 5, 769–781 Zbl 0615.90042, MR 0884303, 10.1287/opre.34.5.769
Reference: [11] Loulou R., Beale T.: A comparison of variance reducing techniques in PERT simulations.INFOR Canadian J. Opl. Res. 14 (1976), 259–269 Zbl 0354.62027
Reference: [12] Magott J., Skudlarski K.: Estimating the mean completion time of PERT networks with exponentially distributed duration of activities.European J. Oper. Res. 71 (1993), 70–79 10.1016/0377-2217(93)90261-K
Reference: [13] Robillard P.: Expected completion time in PERT networks.Oper. Res. 24 (1976), 177–182 Zbl 0324.90025, MR 0406447, 10.1287/opre.24.1.177
Reference: [14] Ross S. M.: Stochastic Process.Wiley, New York 1983
Reference: [15] Sculli D.: The completion time of PERT networks.J. Opl. Res. Soc. 34 (1983), 155–158 Zbl 0502.90045, 10.1057/jors.1983.27
Reference: [16] Tavares L. V.: A review of the contribution of operational research to project management.European J. Oper. Res. 136 (2002), 1–18 Zbl 1086.90532, 10.1016/S0377-2217(01)00097-2
.

Files

Files Size Format View
Kybernetika_39-2003-3_11.pdf 1.501Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo