Previous |  Up |  Next

Article

Title: Neutral functional integrodifferential control systems in Banach spaces (English)
Author: Balachandran, Krishnan
Author: Anandhi, E. Radhakrishnan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 3
Year: 2003
Pages: [359]-367
Summary lang: English
.
Category: math
.
Summary: Sufficient conditions for controllability of neutral functional integrodifferential systems in Banach spaces with initial condition in the phase space are established. The results are obtained by using the Schauder fixed point theorem. An example is provided to illustrate the theory. (English)
Keyword: controllability
Keyword: phase space
Keyword: neutral functional integrodifferential system
Keyword: Schauder fixed point theorem
MSC: 34K30
MSC: 34K35
MSC: 93B05
MSC: 93C23
MSC: 93C25
idZBL: Zbl 1249.93016
idMR: MR1995740
.
Date available: 2009-09-24T19:54:47Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135538
.
Reference: [1] Balachandran K., Dauer J. P., Balasubramaniam P.: Controllability of nonlinear integrodifferential systems in Banach spaces.J. Optim. Theory Appl. 84 (1995), 83–91 MR 1312963, 10.1007/BF02191736
Reference: [2] Balachandran K., Dauer J. P., Balasubramaniam P.: Local null controllability of nonlinear functional differential systems in Banach spaces.J. Optim. Theory Appl. 88 (1995), 61–75 MR 1367033, 10.1007/BF02192022
Reference: [3] Balachandran K., Sakthivel R.: Controllability of neutral functional integrodifferential systems in Banach Spaces.Comput. Math. Appl. 39 (2000), 117–126 Zbl 0982.93019, MR 1729423, 10.1016/S0898-1221(99)00318-1
Reference: [4] Han H. K., Park J. Y., Park D. G.: Controllability of integrodifferential equations in Banach spaces.Bull. Korean Math. Soc. 36 (1999), 533–541 Zbl 0934.35020, MR 1722184
Reference: [5] Hale J. K., Kato J.: Phase space for retarded equations with infinite delay.Funkcial. Ekvac. 21 (1978), 11–41 Zbl 0383.34055, MR 0492721
Reference: [6] Henriquez H. R.: Periodic solutions of quasilinear partial functional differential equations with unbounded delay.Funkcial. Ekvac. 37 (1994), 329–343 MR 1299869
Reference: [7] Henriquez H. R.: Regularity of solutions of abstract retarded functional differential equations with unbounded delay.Nonlinear Anal., Theory, Methods and Applications 28 (1997), 513–531 Zbl 0864.35112, MR 1420796, 10.1016/0362-546X(95)00160-W
Reference: [8] Hernandez E., Henriquez H. R.: Existence results for partial neutral functional differential equations with unbounded delay.J. Math. Anal. Appl. 221 (1998), 452–475 Zbl 0915.35110, MR 1621730, 10.1006/jmaa.1997.5875
Reference: [9] Hino Y., Murakami, S., Naito T.: Functional Differential Equations with Infinite Delay.(Lecture Notes in Mathematics 1473.) Springer–Verlag, Berlin 1991 Zbl 0732.34051, MR 1122588
Reference: [10] Park J. Y., Han H. K.: Controllability of nonlinear functional integrodifferential systems in Banach spaces.Nihonkai Math. J. 8 (1997), 47–53 MR 1454807
Reference: [11] Quinn M. D., Carmichael N.: An approach to nonlinear control problems using fixed point methods, degree theory and pseudo-inverse.Numer. Functional Anal. Optim. 7 (1984–1985), 197-219 MR 0767382, 10.1080/01630568508816189
Reference: [12] Shin J. S.: An existence theorem of functional differential equations with infinite delay in a Banach space.Funkcial. Ekvac. 30 (1987), 19–29 Zbl 0647.34066, MR 0915258
.

Files

Files Size Format View
Kybernetika_39-2003-3_12.pdf 1.015Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo