Previous |  Up |  Next

Article

Title: Non-monotoneous parallel iteration for solving convex feasibility problems (English)
Author: Crombez, Gilbert
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 5
Year: 2003
Pages: [547]-560
Summary lang: English
.
Category: math
.
Summary: The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in an Euclidean space, sometimes leads to slow convergence of the constructed sequence. Such slow convergence depends both on the choice of the starting point and on the monotoneous behaviour of the usual algorithms. As there is normally no indication of how to choose the starting point in order to avoid slow convergence, we present in this paper a non-monotoneous parallel algorithm that may eliminate considerably the influence of the starting point. (English)
Keyword: inherently parallel methods
Keyword: convex feasibility problems
Keyword: projections onto convex sets
Keyword: slow convergence
MSC: 47H09
MSC: 47J25
MSC: 65B99
MSC: 65D18
MSC: 65K05
MSC: 65Y05
MSC: 90C25
idZBL: Zbl 1249.65040
idMR: MR2042340
.
Date available: 2009-09-24T19:56:37Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135554
.
Reference: [1] Bauschke H., Borwein J.: On projection algorithms for solving convex feasibility problems.SIAM Rev. 38 (1996), 367–426 Zbl 0865.47039, MR 1409591, 10.1137/S0036144593251710
Reference: [2] Butnariu D., Censor Y.: On the behaviour of a block-iterative projection method for solving convex feasibility problems.Internat. J. Computer Math. 34 (1990), 79–94 10.1080/00207169008803865
Reference: [3] Butnariu D., Flam S. D.: Strong convergence of expected-projection methods in Hilbert spaces.Numer. Funct. Anal. Optim. 16 (1995), 601–636 Zbl 0834.65041, MR 1341102, 10.1080/01630569508816635
Reference: [4] Censor Y., Zenios S.A.: Parallel Optimization.Theory, Algorithms, and Applications. Oxford University Press, New York 1997 Zbl 0945.90064, MR 1486040
Reference: [5] Combettes P. L.: Construction d’un point fixe commun à une famille de contractions fermes.C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1385–1390 MR 1338291
Reference: [6] Crombez G.: Viewing parallel projection methods as sequential ones in convex feasibility problems.Trans. Amer. Math. Soc. 347 (1995), 2575–2583 Zbl 0846.46010, MR 1277105, 10.1090/S0002-9947-1995-1277105-1
Reference: [7] Crombez G.: Solving convex feasibility problems by a parallel projection method with geometrically defined parameters.Appl. Anal. 64 (1997), 277–290 Zbl 0877.65033, MR 1460084, 10.1080/00036819708840536
Reference: [8] Crombez G.: Improving the speed of convergence in the method of projections onto convex sets.Publ. Math. Debrecen 58 (2001), 29–48 Zbl 0973.65001, MR 1807574
Reference: [9] Gubin L. G., Polyak B. T., Raik E. V.: The method of projections for finding the common point of convex sets.U.S.S.R. Comput. Math. and Math. Phys. 7 (1967), 1–24 10.1016/0041-5553(67)90113-9
Reference: [10] Kiwiel K.: Block-iterative surrogate projection methods for convex feasibility problems.Linear Algebra Appl. 215 (1995), 225–259 Zbl 0821.65037, MR 1317480
Reference: [11] Pierra G.: Decomposition through formalization in a product space.Math. Programming 28 (1984), 96–115 Zbl 0523.49022, MR 0727421, 10.1007/BF02612715
Reference: [12] Stark H., Yang Y.: Vector Space Projections.Wiley, New York 1998 Zbl 0903.65001
.

Files

Files Size Format View
Kybernetika_39-2003-5_4.pdf 1.643Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo