Previous |  Up |  Next


inherently parallel methods; convex feasibility problems; projections onto convex sets; slow convergence
The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in an Euclidean space, sometimes leads to slow convergence of the constructed sequence. Such slow convergence depends both on the choice of the starting point and on the monotoneous behaviour of the usual algorithms. As there is normally no indication of how to choose the starting point in order to avoid slow convergence, we present in this paper a non-monotoneous parallel algorithm that may eliminate considerably the influence of the starting point.
[1] Bauschke H., Borwein J.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38 (1996), 367–426 DOI 10.1137/S0036144593251710 | MR 1409591 | Zbl 0865.47039
[2] Butnariu D., Censor Y.: On the behaviour of a block-iterative projection method for solving convex feasibility problems. Internat. J. Computer Math. 34 (1990), 79–94 DOI 10.1080/00207169008803865
[3] Butnariu D., Flam S. D.: Strong convergence of expected-projection methods in Hilbert spaces. Numer. Funct. Anal. Optim. 16 (1995), 601–636 DOI 10.1080/01630569508816635 | MR 1341102 | Zbl 0834.65041
[4] Censor Y., Zenios S.A.: Parallel Optimization. Theory, Algorithms, and Applications. Oxford University Press, New York 1997 MR 1486040 | Zbl 0945.90064
[5] Combettes P. L.: Construction d’un point fixe commun à une famille de contractions fermes. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1385–1390 MR 1338291
[6] Crombez G.: Viewing parallel projection methods as sequential ones in convex feasibility problems. Trans. Amer. Math. Soc. 347 (1995), 2575–2583 DOI 10.1090/S0002-9947-1995-1277105-1 | MR 1277105 | Zbl 0846.46010
[7] Crombez G.: Solving convex feasibility problems by a parallel projection method with geometrically defined parameters. Appl. Anal. 64 (1997), 277–290 DOI 10.1080/00036819708840536 | MR 1460084 | Zbl 0877.65033
[8] Crombez G.: Improving the speed of convergence in the method of projections onto convex sets. Publ. Math. Debrecen 58 (2001), 29–48 MR 1807574 | Zbl 0973.65001
[9] Gubin L. G., Polyak B. T., Raik E. V.: The method of projections for finding the common point of convex sets. U.S.S.R. Comput. Math. and Math. Phys. 7 (1967), 1–24 DOI 10.1016/0041-5553(67)90113-9
[10] Kiwiel K.: Block-iterative surrogate projection methods for convex feasibility problems. Linear Algebra Appl. 215 (1995), 225–259 MR 1317480 | Zbl 0821.65037
[11] Pierra G.: Decomposition through formalization in a product space. Math. Programming 28 (1984), 96–115 DOI 10.1007/BF02612715 | MR 0727421 | Zbl 0523.49022
[12] Stark H., Yang Y.: Vector Space Projections. Wiley, New York 1998 Zbl 0903.65001
Partner of
EuDML logo