Previous |  Up |  Next


ranking theory; pairwise comparison; distance-based methods; goal programming
The pairwise comparison method is an interesting technique for building a global ranking from binary comparisons. In fact, some web search engines use this method to quantify the importance of a set of web sites. The purpose of this paper is to search a set of priority weights from the preference information contained in a general pairwise comparison matrix; i.e., a matrix without consistency and reciprocity properties. For this purpose, we consider an approximation methodology within a distance-based framework. In this context, Goal Programming is introduced as a flexible tool for computing priority weights.
[1] Brin S., Page L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30 (1998), 107–117 DOI 10.1016/S0169-7552(98)00110-X
[2] Charnes A., Cooper W. W.: Goal programming and multiple objective optimization: Part 1. European J. Oper. Res. 1 (1977), 39–54 DOI 10.1016/S0377-2217(77)81007-2 | MR 0452646
[3] Chu M. T.: On the optimal consistent approximation to pairwise comparison matrices. Linear Algebra Appl. 272 (1998), 155–168 MR 1489384 | Zbl 0905.62005
[4] González-Pachón J., Romero C.: Distance-based consensus methods: a goal programming approach. Omega 27 (1999), 341–347 DOI 10.1016/S0305-0483(98)00052-8
[5] Ignizio J. P., Cavalier T. M.: Linear Programming. Prentice-Hall, Englewood Cliffs, N.J. 1994
[6] Jensen R. E.: An alternative scaling method for priorities in hierarchical structures. J. Math. Psychology 28 (1984), 317–332 DOI 10.1016/0022-2496(84)90003-8
[7] Kendall M. G.: Further contributions to the theory of paired comparisons. Biometrics 11 (1955), 43–62 DOI 10.2307/3001479 | MR 0075506
[8] Koczkodaj W., Orlowski M.: Computing a consistent approximation to a generalized pairwise comparisons matrix. Comput. Math. Appl. 37 (1999), 79–85 DOI 10.1016/S0898-1221(99)00048-6 | MR 1674423 | Zbl 0936.65057
[9] Romero C.: Handbook of Critical Issues in Goal Programming. Pergamon Press, London 1991 Zbl 0817.68034
[10] Saaty T. L.: The Analytic Hierarchy Process. McGraw-Hill, New York 1980 MR 0773297 | Zbl 1184.90094
[11] Saaty T. L., Vargas L. G.: Comparison of eigenvalues, logarithmic least square and least square methods in estimating ratios. Math. Model. 5 (1984), 309–324 DOI 10.1016/0270-0255(84)90008-3 | MR 0781652
[12] Wei T. H.: The Algebraic Foundations of Ranking Theory. Cambridge Univ. Press, Cambridge 1952
Partner of
EuDML logo