Previous |  Up |  Next

Article

Title: On the solution of the constrained multiobjective control problem with the receding horizon approach (English)
Author: De Vito, Daniele
Author: Scattolini, Riccardo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 5
Year: 2008
Pages: 649-663
Summary lang: English
.
Category: math
.
Summary: This paper deals with a multiobjective control problem for nonlinear discrete time systems. The problem consists of finding a control strategy which minimizes a number of performance indexes subject to state and control constraints. A solution to this problem through the Receding Horizon approach is proposed. Under standard assumptions, it is shown that the resulting control law guarantees closed-loop stability. The proposed method is also used to provide a robustly stabilizing solution to the problem of simultaneously minimizing a set of $H_{\infty }$ cost functions for a class of systems subject to bounded disturbances and/or parameter uncertainties. Numeric examples are reported to highlight the stabilizing action of the proposed control laws. (English)
Keyword: multiobjective optimization
Keyword: receding horizon control
Keyword: robust control
Keyword: stability
MSC: 34H05
MSC: 49J35
MSC: 90C29
MSC: 90C59
MSC: 93B36
MSC: 93C10
MSC: 93C55
MSC: 93D15
idZBL: Zbl 1178.93089
idMR: MR2479310
.
Date available: 2009-09-24T20:38:49Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135880
.
Reference: [1] Allgöwer F., Badgwell T. A., Qin J. S., Rawlings J. B., Wright S. J.: Nonlinear predictive control and moving horizon estimation – an introductory overview.In: Advances in Control (P. M. Frank, ed.), Springer–Verlag, Berlin 1999, pp. 391–449
Reference: [2] Borisson U.: Self-tuning regulators for a class of multivariable systems.Automatica 15 (1979), 209–215
Reference: [3] Nicolao G. De, Magni, L., Scattolini R.: Stability and robustness of nonlinear receding-horizon control.In: Nonlinear Model Predictive Control (F. Allgöwer and A. Zheng, eds.), Birkhäuser Verlag, Basel 2000 Zbl 0958.93512, MR 1756662
Reference: [4] Karbowski A.: Optimal infinite-horizon multicriteria feedback control of stationary systems with minimax objectives and bounded disturbances.J. Optim. Theory Appl. 101 (1999), 59–71 Zbl 0945.90055, MR 1685591
Reference: [5] Lazar M., Heelmes W. P. M. H., Bemporad, A., Weiland S.: Discrete-time non-smooth nonlinear MPC: stability and robustness.In: Assessment and Future Directions of Nonlinear Model Predictive Control (Lecture Notes in Control and Information Science 358; R. Findeisen, F. Allgöwer and L. T. Biegler, eds.), Springer–Verlag, Berlin 2007, pp. 93–103 MR 2252836
Reference: [6] Li, Duan: On the minimax solution of multiple linear-quadratic problems.IEEE Trans. Automat. Control 35 (1990), 59–71 Zbl 0721.49034, MR 1073261
Reference: [7] Maciejowski J.: Predictive Control with Constraints.Prentice-Hall, N.J. 2001 Zbl 0978.93002
Reference: [8] Magni L., Nicolao G. De, Scattolini, R., Allgöwer F.: Robust model predictive control of nonlinear discrete-time systems.Internat. J. Robust and Nonlinear Control 13 (2003), 229–246 MR 1973635
Reference: [9] Magni L., Raimondo D. M., Scattolini R.: Regional input-to-state stability for nonlinear model predictive control.IEEE Trans. Automat. Control 51 (2006), 1548–1553 MR 2260135
Reference: [10] Scattolini R.: Multi-rate self-tuning predictive controller for multi-variable systems.Internat. J. Systems Sci. 23 (1993), 1347–1359 MR 1179989
Reference: [11] Shtessel Y. B.: Principle of proportional damages in a multiple criteria LQR problem.IEEE Trans. Automat. Control 41 (1996), 461–464 Zbl 0966.49501, MR 1383000
.

Files

Files Size Format View
Kybernetika_44-2008-5_4.pdf 876.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo